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Abstract Results (Tachiiri et al., 2015)

- We analyzed a dataset from an experiment of a simplified earth system TCRE range (unconstrained and constrained)
model (focus: on the change in TCRE™* after atmospheric CO,

concentration was stabilized in RCP 4.5. (*:transient climate response to In 2005; 0.3-2.4 K/TtC (unconstrained case) and 1.1-1.7 K/TtC (constrained case)

cumulative carbon emissions) (a) (b)

- We estimated the TCRE 1n 2005 at 0.3—2.4 K/TtC for an unconstrained <7 ﬂ [ 7 <] Hfl i M\ l ]
case and 1.1-1.7 K/TtC when constrained with historical and present-day | 'L \ // ;\ l <
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- We also found that variation of land carbon uptake 1s significant to the F(\J /\ o | / T
total allowable carbon emissions and subsequent change of the TCRE. 1 A1 AN ( i / T ——
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- In our experiment, we revealed that ECS** has a strong positive / r'/\ MY I
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relationship with the TCRE at the beginning of the stabilization and its (900 2000 2100 2300 2300 a0 2000 2100 2200 2300
sub sequent change. (* * :equ111br1um climate SCIlSlthltY) Figure 2. Temporal change in range of uncertainty of TCRE for RCP4.5: (a) unconstrained and
.o (b) constrained cases. Red: median, blue: 16th and 84th percentiles, black: 5th and 95th

- We confirmed that for CMIP5 models, ECS has a strong positive percentiles. Twenty-year averages are presented.

relationship with TCRE. . ..
Change 1n uncertainty in TCRE for RCP4.5
Table 1. Parameters perturbed in this study and the ranges considered (Tachiiri ef al., 2013) a b i

Parameter Component Default Perturbation range

Chimate sensitivity Atmosphere 4.7 [b] -6 KT i" E o

Vertical diffusivity Ocean 0.1-3.0 cm?/sec* 0.3-3.0 x default S S N

Horizontal diffusivity Ocean I x 107 cm?/sec 0.5-5.0 x default § g o

Gent-McWilliams thickness parameter [a] Ocean 7 % 10° cm?/sec 1-20 x 10° cm? s ! = - - B et

Magnitude of freshwater flux adjustment Ocean 1.0 (ratio to the values by [¢]) 0.5-2.0

Wind speed used in marine CO> uptake Marine carbon 3.3 m/s [b] 2.0-8.0 m/s o °

Maximum photosynthetic rate Land carbon  8.0-13.5 umolCO,/(m?%s)** 0.8-3.0 x default L 2 -

Specific leal area Land carbon 110-170 cmz,-"{g drymatter)** 0.5-2.5 x default T P l ! ! ! ' '

Minimum temperature for photosynthesis Land carbon  —5.0-11.0"C** —4.5-+43.0°C of default -52:10 (IJ 5[;0 1|:|100 15[00 zolﬂu 25|00 : i s i

Coefficient for temperature dependency of plant’s respiration  Land carbon 2.0 (dimensionless) 1.5-3.0 Cumulative allowable emission (PgC) CUmiaive allowabia emeseion (Fgv)

? p_alrf“n*elﬁerli}i lffm:emme dependency of soil respiration La;d “ ﬂ:ml 4;32[)K ;50_5; OK p—_ Figure 3 (a) All 512 members. Pink (1850-2115, 1.e., before CO, concentration 1s nearly stabilized) and red

otalacrosot foremg oreing — (REFS) SO RS (2115-2300) curvesrepresent the ensemble members within the 5-95% TCRE range for each year
(after the constraint). Grey and black curves are the same but for those beyond the 5-95% TCRE range
CO2 emission scenarios Table 2. Observation data used for constraint of simulations for each year. (b) After grouping based on average TCRE in 2111-2120:<1.0 (black), 1.0-1.5 (red),
(Tachiiri et al., 2013) 1.5-2.0 (green), 2.0-2.5 (blue), 2.5-3.0 (cyan), 3.0-3.5 (magenta), and>3.5 (grey)K/TtC (years before
atmosoheric co. TS - ’ 2010 are not presented because they demonstrated too much fluctuation). The solid and dotted lines
IET;S;;::::ﬁDnz """"""" No. Variables Assumed distribution pl‘esent 18502115 and 2115—2300, reSpeCtively. Points at ycears 2100 and 2200 1n curves are connected
prses Ao - by dashed black lines to show their relative positions in those years. Open circles depict equilibrium
Next year's CO, level O, lux  (calciatedrom the | T'e;“l ”f gl{:‘“[m‘m - ! states (after 3000-year run for atmosphere and ocean and 2000-year run for land).
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Figure 1. Structure of the loosely coupled model f,?il“:[ f;)r;)l o fliil‘r;lin e
The dashed box and lines indicate processes S Present sea salinity Ceometric mean of T -
that are switched on for emission scenario (mean for 1990-97 G ussian weishts for - é - A — T f 1 —— : 1
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experlments. (TaChllrl et al., 2010) spatial 3D) 4 layers Cumulative carbon uptake (PgC) Cumulative carbon uptake (PgC)
{\4 el hOd S o AT varble productot I'® Figure 4. Modelled time-evolving relationships between air temperature change (CO,-induced) and cumulative
land/ocean carbon uptakes for each ensemble member and RCP4.5: (a) ocean and (b) land. Pink
: ce : (18502115, before CO: concentration 1s nearly stabilized) and red (after that) curves represent the
- The experlment (Tachnrl et al. . 201 3) was performed using ar EMIC ensemble members within the 5-95% TCRE range for each year after constraints. Grey and black
: : . curves are the same but for those beyond the 5-95% TCRE range for each year.
called the Japan Uncertainty Modelling Project—Loosely Coupled g : : g
Model (JUMP-LCM; Tachiiri et al., 2010). Validation for CMIP5 models| Lower half of Fig. 3b is observed in CMIP5 models.

- The model has a two-dimensional energy—moisture balance atmosphere, (2) (b)

Coupled Witj:l an Ocean general Circujhation model. In addition, a o Lo _\,.. ,,,,,,,,,,,,,,,,,
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concentration, and used that to drive the land component (Fig. 1). S| redeemees:
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parameters, both physical and biogeochemical, were perturbed. ECS (9 Cumulathe albwable emission (PGC)

- The ranges of parameters are tuned as close as possible to those of the Figure 5. Behaviours of earth system models |

(a) Relationship between ECS and TCRE for ESMs. (b) Temperature anomaly and cumulative carbon
C4AMIP models (Friedlingstein et al. 2006) emissions (20 year averages). The CO,-induced warming is calculated from AT for each model,
. . o ’. 1 . . multiplied by the ratio of CO:-induced and total radiative forcing in the RCP4.5 radiative forcing

- Each ensemble simulation 1s then weighted using a set of eight key SCenario.
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system and the carbon cycle.
- In caluclating TCRE, as temperature change we use CO,-induced

warming ar..-ar x ==, where AT 1s the temperature anomaly, and RF,, and

all

RF o, are total and CO,-induced radiative forcing in the RCP scenario.




