SURFACE WATER RESOURCES POTENTIAL ASSESSMENT OF UNGAUGED CATCHMENTS IN LAKE TANA BASIN, ETHIOPIA

Getachew Tegegne, and Young-Oh Kim

10th AvH Conference 2015 Addis Ababa, Ethiopia

Seoul National University

Civil & Environmental Engineering Department

Research Group for Climate Change Adaptation in Water Resources

Contents

1. Introduction

2. Location and Description of Study Area

3. Methodology

4. Results and Discussion

5. Conclusion

6. References

1. Introduction

Problem

The major problem for hydrological modeling

- Estimation of streamflow in ungauged catchments

Possible solution

The model parameters need to be estimated by using information from gauged catchments and then hydrological models can be used for streamflow estimation

How?

Objective

General objective

✓ To assess the surface water potential of ungauged catchments in Lake Tana basin.

Specific objectives

- ✓ To evaluate the three proposed parameter transfer schemes,
- ✓ To compare the performance of generalized likelihood uncertainty estimation (GLUE) and particle swarm optimization (PSO) tools for optimization of model parameters in gauged catchments.

2. Location and Description of the Study Area

- Area of Basin 15,114 km2
- Geographically it extends between 10.95 oN to 12.78 oN latitude and from 36.89 oE to 38.25 oE longitude.
- The elevation ranges between 914 m to 4096 m +MSL,
- The mean annual rainfall amount ranges between 813 mm and 2328 mm.
- The mean annual minimum temperature and maximum temperature are 9.3 oC and 29.6 oC respectively
- Dominant land use: Agriculture 51.37%
- Dominant soil use: Halpic luvisol 20.68%

- ✓ Area of gauged catchment is 5236 km²
- ✓ Area of ungauged catchment is 9878 km²

3. Methodology

3.1 Hydrological Model

- Soil and Water Assessment Tool (SWAT)
 - Physically based semi-distributed hydrological model.
 - The hydrological balance is calculated based on the following equation:

$$SW_{t} = SW_{0} + \sum_{i=1}^{t} (R_{day} - Qsurf - Ea - Wseep - Qgw)_{i}$$

where; SWt= the final water content (mm H2O), SWo= the initial soil water content on day i (mm H2O), t = time, days, Rday= is the amount of precipitation on day i (mm H2O), Qsurf = is the amount of surface runoff on day i (mm H2O), Ea= is the amount of evapotranspiration on day i (mm H2O), Wseep = is the amount of water entering the vadose zone from the Soil profile on day i, Qgw= is the amount of ground water flow on day i (mm H2O).

3.2 SWAT Model Setup

- 3.2.1 Watershed Delineation
- Delineation of the watershed into several hydrologically connected sub-watersheds.

3.2.2 Land Use/Soil/Slope Reclassification and Overlay

Figure 3: Land use and soil map of the study area

3.2.3 Hydrologic Response Unit Analysis

> 23 sub-basins and 142 HRUs

3.2.4 Importing Weather Data

The climatic variables required by SWAT consist of daily precipitation, maximum & minimum temperature, solar radiation, wind speed and relative humidity.

3.3 Sensitivity Analysis

A sensitivity analysis is conducted using the built-in SWAT-CUP sensitivity analysis tool.

3.4 Model Performance

- Model parameters are optimized in four gauged catchments using the SWAT-CUP built-in calibration techniques.
- The model simulation has been evaluated using coefficient of determination (R2), and Nash and Sutcliff efficiency (NSE) criteria.

3.5 Parameter Optimization

□ Particle Swarm Optimization (PSO)

Generalized Likelihood Uncertainty Estimation (GLUE)

Objective Function

Nash and Sutcliff efficiency (NSE)

$$NSE = 1 - \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2}$$

3.6 Parameter transfer schemes

- Identification of homogeneous regions (PT-I) based on annual precipitation totals of the study area
- 2. Global averaging method (PT-II).
- 3. Considering one representative gauged catchment as a donor for all ungauged catchments (PT-III).
- \succ Total no. of HRUs = 142
- Total no. of clustered HRUs = 39

AGRC/LVX/13-39393 AGRC/LVh/7.2-10.8 AGRC/LVh/3.6-7.2

AGRC/LVh/0-3.6

4. Results and Discussion

4.1 Modelling of Gauged Catchments

4.1.1 Results of Global Sensitivity Analysis

Table 1: t-stat and p-values for parameter sensitivity for all gauged catchments.

So. No.	Parameter	Gilgel Abay		Gummera		Rib		Megech	
		t-Stat	P-Value	t-Stat	P-Value	t-Stat	P-Value	t-Stat	P-Value
1	r_CN2.mgt	47.62166	0	47.33963	0	-19.4022	6.25E-77	-35.1301	1.09E-210
2	v_GW_REVAP.gw	-1.44449	0.148759	-5.53714	3.48E-08	17.05032	6.09E-61	10.19484	7.98E-24
3	v_GW_DELAY.gw	-17.1551	1.27E-61	-24.4188	2.21E-115	15.33219	3.12E-50	8.454244	5.36E-17
4	v_ALPHA_BF.gw	10.05271	3.18E-23	11.32075	7.76E-29	-14.9617	4.88E-48	-6.68043	3.08E-11
5	v_ALPHA_BNK.rte	9.940337	9.36E-23	5.056669	4.66E-07	1.706526	0.088066	-5.61328	2.26E-08
6	r_SOL_K.sol	1.186936	0.235395	-6.07157	1.51E-09	6.923138	5.94E-12	4.592259	4.66E-06
7	r_SOL_BD.sol	8.030916	1.64E-15	3.940134	8.43E-05	-3.21987	0.001303	-4.3572	1.38E-05
8	v_CH_N2.rte	2.725109	0.006484	3.576792	0.000356	0.759129	0.447865	2.663424	0.007797
9	v_GWQMN.gw	1.731878	0.083451	-1.29791	0.194469	4.805065	1.66E-06	2.282674	0.022555
10	v_SFTMP.bsn	1.691544	0.09089	0.301472	0.763086	-1.71986	0.085614	-1.69683	0.089885
11	v_ESCO.hru	0.527894	0.597632	1.50548	0.13236	-5.96981	2.81E-09	-1.17015	0.24208
12	v_CH_K2.rte	3.764889	0.000171	0.67859	0.497477	-5.85183	5.67E-09	-0.68028	0.496406
13	r_SOL_AWC.sol	3.559494	0.00038	1.75567	0.079299	-1.93864	0.052687	-0.32425	0.74578

t-stat : larger in absolute values are more sensitive p-values: a values close to zero has more significance.

4.1.2 Dotty Plots

Sampling point distribution of the first ranked sensitive parameter, curve number (CN2), using GLUE and PSO.

Figure 4: Plots of parameter values (x-axis) vs values of objective function (y-axis)

4.1.3 Model Performance

Table 2: Performance measure values for all gauged catchments

Performance	Gilgel Abay		Gummera		Rib		Megech	
Measure	GLUE	PSO	GLUE	PSO	GLUE	PSO	GLUE	PSO
R2	0.83	0.83	0.55	0.63	0.56	0.67	0.58	0.7
NSE	0.82	0.82	0.51	0.62	0.53	0.64	0.53	0.66

4.1.4 Optimized Model Parameters

			Range					
	Model parameters	Gilgel				Global		
S.No.		Abay	Gummera	Rib	Megech	Average	Lower	Upper
1	r_CN2.mgt	-0.143	-0.151	-0.224	-0.144	-0.166	-0.2	0.2
2	v_ALPHA_BF.gw	0.318	0.261	0.046	0.046	0.167	0	1
3	v_GW_DELAY.gw	24.149	10.961	397.342	292.211	181.165	0	500
4	v_GWQMN.gw	0.699	0.239	0.035	0.859	0.457	0	5000
5	v_GW_REVAP.gw	0.200	0.150	0.147	0.177	0.168	0	0.2
6	v_ESCO.hru	0.841	0.839	0.866	0.796	0.836	0.8	1
7	v_CH_N2.rte	0.215	0.212	0.133	0.183	0.186	-0.01	0.3
8	v_CH_K2.rte	81.502	123.973	89.445	42.751	84.417	-0.01	500
9	v_ALPHA_BNK.rte	0.796	0.290	0.509	0.061	0.414	0	1
10	r_SOL_AWC.sol	-0.013	0.054	-0.143	-0.120	-0.056	-0.2	0.4
11	r_SOL_K.sol	0.794	0.780	0.696	0.406	0.669	-0.8	0.8
12	r_SOL_BD.sol	-0.013	0.102	0.218	0.222	0.132	-0.5	0.6
13	v_SFTMP.bsn	-0.109	1.6197	-1.344	-0.848	-0.171	-5	5

4.2 Parameter transfer Schemes

4.2.1 Identification of homogeneous regions (PT-I)

- ✓ Gauged Gilgel Abay catchment for ungauged catchment in region-III,
 ✓ Gauged Gummera & Rib catchment for ungauged catchment in region-II,
 ✓ Gauged Megech catchment for ungauged catchment of region-I.
- weighted average for common sub-basins of the homogeneous regions

Figure 5: Delineated three homogenous regions of LTB

4.2.2 Global averaging method (PT-II)

This approach is based on the average of optimized model parameter values of all gauged catchments, that is obtaining one value for each of the parameters.

4.2.3 PT-III

Gauged Gilgel Abay catchment is considered as the representative catchment based on its model performance value.

4.3 Performance comparison of parameter transfer schemes

- I. Hydrograph based model comparison
- Evaluation Indicators: R² and NSE

Figure 6: Plot of observed vs simulated total stream outflow from Lake Tana Basin.

Table 4: Values	of	performance	measure
-----------------	----	-------------	---------

Performance measure	PT-I	PT-II	PT-III	
R2	0.93	0.82	0.95	
NSE	0.71	0.58	0.31	

- II. Flow Duration Curve Based Model Comparison
- Evaluation Indicators: R-Bias and R² on Flow Duration Curve

Table 5: Flow duration curve based performance measure of parameter transfer

	PT-I		PT-II		PT-III		Best
Flow Range	R-Bias	R2	R-Bias	R2	R-Bias	R2	Method
peak flow	0.1493	0.854	-0.035	0.790	0.626	0.966	PT-II
moist flow	0.369	0.899	0.200	0.891	0.588	0.941	PT-II
mid range flow	1.900	0.9188	2.573	0.938	0.946	0.971	PT-III
dry flow	8.662	0.970	13.985	0.847	-3.247	0.955	PT-III
low flow	32.950	0.796	50.717	0.749	0.976	0.922	PT-III

Figure 8: Inflow hydrograph from all homogeneous regions to Lake Tana

4.5 Hydrologic Model Uncertainty

The values of P-factor and r-factor are 0.78 and 0.84 respectively.

5. Conclusion

- ✓ PSO method outperforms GLUE
- ✓ SCS curve number (CN2) has been found the most sensitive parameter in all gauged catchments.
- ✓ PT-I parameter transfer scheme performs better to reproduce the exact hydrograph whereas PT-II is best for high and moist flow simulation and PT-III is best for midrange, dry, and low flow simulation.
- ✓ Yearly average surface flow for the homogeneous regions was found 29.54 m3/s, 112.92 m3/s, and 130.10 m3/s for time periods of (1989 – 2005) for region-I, region-II, and region-III respectively where PT-I parameter transfer scheme was used.
 - ✓ PT-II and PT-III were found good for climate change impact assessment study.

6. References

- Abbaspour, K.C., 2012. Swat-Cup4: SWAT Calibration and Uncertainty Programs Manual Version 4, Department of Systems Analysis, Integrated Assessment and Modelling SIAM, Eawag. Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
- Arnold, J.G., Fohrer, N., 2005. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrological processes, 19(3), 563-572.
- Eberhart, R.C., Kennedy, J., 1995. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science pp: 39 -43. IEEE service center, Piscataway, NJ, Nagoya, Japan.

Thank You!