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Introduction

Urban water demand (UWD) forecasting
Optimizing system performance [Adamowski, 2008];

Implement water use restrictions;

Least-cost infrastructure expansion strategy [Tiwari and Adamowski, 2015]; and

Provide risk assessment for the water supply system [Yung et al., 2011].

UWD is a nonlinear process [House-Peters and Chang, 2011] requiring
nonlinear modeling tools such as:
Artificial Neural Networks (ANN);

Support Vector Regression (SVR); and

Fuzzy Logic (FL).



Introduction

ANN: many hyper-parameters; iterative calibration; local minima.

SVR: very sensitive to hyper-parameter settings; longer development
times (than ANN); global solution.

Extreme Learning Machine (ELM) [Huang et al., 2006]:
Same configuration as ANN but much faster;

Global solution;

Better or comparable performance to ANN and SVR [Huang et al., 2012];

Only three simple steps: design hidden layer, randomization, inversion of
hidden layer to obtain solution.



Problem Definition

Given an UWD time series: x t for t = 1, 2, …𝑁.

Predict the next value x t + 1 using nonlinear methods and historical records, then
estimate the importance of the historical records considered in the forecast:

[1] x t + 1 = f([x t , x t − τ , … , x t − m − 1 τ]);  time lag space

[2]  x t + 1 =  k=1
L bksig ak0+ j=1

m akjxi−(j−1)τ ;  ELM

[3]  S j−1 τ =
1

N−(j−1)τ
 i= j−1 τ+1
N ∂ xi+1

∂xi−(j−1)τ
;  ELM output sensitivity to time lag j

[4] 
∂ xi+1

∂xi−(j−1)τ
=  k=1

L akjbk sig ak0+ c=1
m akcxi−(c−1)τ 1−sig ak0+ c=1

m akcxi−(c−1)τ



Objectives

The main goal of this study is to compare two different nonlinear methods
(based on chaos theory [Takens, 1981]) for choosing which historical
records to include in a forecast for a given UWD time series and to forecast
the process at one-step ahead. The importance of each historical record
considered in the forecast can then be evaluated via model-based and
model-free approaches.

Entropy Ratio (ER) [Gautama et al., 2003];

Local Constant Modeling (LCM) [Small and Tse, 2004];

ELM;

Conditional Mutual Information (CMI) [Cover and Thomas, 1991].



Methodology

Three daily UWD signals from Canadian water utilities (Montreal (M),
Toronto (T), and Victoria (V)) were collected for this study;

Each signal was determined to be chaotic through the largest Lyapunov
exponent method [Wolf et al., 1985; Kodba et al., 2005];

Each signal was then transformed to its time lag space via ER and LCM
methods;

For each signal the time lag space from each method (ER and LCM) were
used as inputs to ELM (creating ER-ELM and LCM-ELM) to derive a one-step
ahead prediction.



Methodology

The final 365 records were used for validation;

Each ELM considered up to 150-250 sigmoid hidden layer neurons
(activation functions);

The one-step ahead predictions (ER-ELM and LCM-ELM) were then
assessed by measures of:
Precision (root mean square error (RMSE)); and

Efficiency (Nash-Sutcliffe Efficiency Index (EI)).

Model-based (ELM output sensitivity) and model-free (CMI)
approaches are used to quantify time lag importance.



Results (time delay embedding)

Optimal Time Delay 
Embedding Parameters

# Hidden 
Neurons

Performance Evaluation

LCM* ER LCM ER LCM ER LCM ER

Time 
Series

m m τ RMSE (ML/D) EI

Montreal 
(M)

14 4 7 83 4 30.265 41.846 0.911 0.830

Toronto
(T)

45 2 2 91 15 72.526 72.939 0.550 0.545

Victoria 
(V)

106 4 7 240 6 7.899 13.577 0.957 0.872

* Time delay is fixed at 1 for the LCM method



Results (Victoria time series plot)
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Results (Toronto time series plot)
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Results (Montreal time series plots)
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Results (Montreal: time lag importance)
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Conclusions & Recommendations

LCM-ELM outperformed ER-ELM in terms of precision (RMSE) and
efficiency (EI) for each time series (e.g. V time series  EI scores:
0.957 (LCM) vs. 0.830 (ER));

ELM based time lag importance measures confirmed via model-free
approach;

LCM provided higher dimensional lag spaces compared to ER; and

LCM-ELM models contained a larger number of parameters than ER-
ELM models (e.g. T time series  # Hidden Neurons: 91 (LCM) vs. 15
(ER)).



Conclusions & Recommendations (Maximum Monthly 
[Average] UWD Profile for Montreal)
LCM-ELM more accurately captured the extremes of each time series (e.g. Montreal).
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Conclusions & Recommendations

• Create bootstrap based versions of ER-ELM and LCM-ELM to provide confidence
intervals for predictions and time lag sensitivities;

• Utilize time-frequency localized algorithms (e.g. wavelet transforms or empirical
mode decomposition) to improve overall forecast accuracy and to improve
prediction of outliers;

• Bootstrap based ER-ELM and LCM-ELM can be further improved by coupling with
time-frequency localized algorithms; and

• Future studies should consider investigating a wider array of urban water supply
system time series (e.g. reservoirs, transmission mains, automated metering
infrastructure) to decipher the best approach (ER-ELM or LCM-ELM) to use in
general chaotic water resources time series forecasting.



THANK YOU!
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