Comparison of different time delay embedding strategies for urban water demand (UWD) forecasting using machine learning techniques

John Quilty¹, Jan Adamowski¹, Bahaa Khalil¹, & Maheswaran Rathinasamy² ¹McGill University Department of Bioresource Engineering ²Indian Institute of Technology Delhi Department of Civil Engineering

Background source: http://aqualegion.com/wp-content/uploads/istock_000003810943medium1-1024x653.jpg

Introduction

≻Urban water demand (UWD) forecasting

Optimizing system performance [Adamowski, 2008];

Implement water use restrictions;

Least-cost infrastructure expansion strategy [Tiwari and Adamowski, 2015]; and

Provide risk assessment for the water supply system [Yung et al., 2011].

UWD is a nonlinear process [House-Peters and Chang, 2011] requiring nonlinear modeling tools such as:

Artificial Neural Networks (ANN);

Support Vector Regression (SVR); and

► Fuzzy Logic (FL).

Introduction

- >ANN: many hyper-parameters; iterative calibration; local minima.
- SVR: very sensitive to hyper-parameter settings; longer development times (than ANN); global solution.
- Extreme Learning Machine (ELM) [Huang et al., 2006]:
 - Same configuration as ANN but **much faster**;
 - ➤Global solution;
 - Better or comparable performance to ANN and SVR [Huang et al., 2012];
 Only three simple steps: design hidden layer, randomization, inversion of hidden layer to obtain solution.

Problem Definition

- Solven an UWD time series: x(t) for t = 1, 2, ... N.
- Predict the next value x(t + 1) using nonlinear methods and historical records, then estimate the importance of the historical records considered in the forecast: [1] x(t + 1) = f([x(t), x(t τ), ..., x(t (m 1))τ]); → time lag space

$$[2] \hat{x}(t+1) = \sum_{k=1}^{L} b_k sig \left(a_{k0} + \sum_{j=1}^{m} a_{kj} x_{i-(j-1)\tau} \right); \rightarrow ELM$$

 $[3] \widehat{S}((j-1)\tau) = \frac{1}{N-(j-1)\tau} \sum_{i=(j-1)\tau+1}^{N} \left| \frac{\partial \widehat{x}_{i+1}}{\partial x_{i-(j-1)\tau}} \right|; \rightarrow \text{ELM output sensitivity to time lag j}$

$$[4] \frac{\partial \widehat{x}_{i+1}}{\partial x_{i-(j-1)\tau}} = \sum_{k=1}^{L} a_{kj} b_k \operatorname{sig} \left(a_{k0} + \sum_{c=1}^{m} a_{kc} x_{i-(c-1)\tau} \right) \left(1 - \operatorname{sig} \left(a_{k0} + \sum_{c=1}^{m} a_{kc} x_{i-(c-1)\tau} \right) \right)$$

Objectives

➤The main goal of this study is to compare two different nonlinear methods (based on chaos theory [Takens, 1981]) for choosing which historical records to include in a forecast for a given UWD time series and to forecast the process at one-step ahead. The importance of each historical record considered in the forecast can then be evaluated via model-based and model-free approaches.

Entropy Ratio (ER) [Gautama et al., 2003];

Local Constant Modeling (LCM) [Small and Tse, 2004];

≻ELM;

≻Conditional Mutual Information (CMI) [Cover and Thomas, 1991].

Methodology

- Three daily UWD signals from Canadian water utilities (Montreal (M), Toronto (T), and Victoria (V)) were collected for this study;
- Each signal was determined to be chaotic through the largest Lyapunov exponent method [Wolf et al., 1985; Kodba et al., 2005];
- Each signal was then transformed to its time lag space via ER and LCM methods;
- ➢ For each signal the time lag space from each method (ER and LCM) were used as inputs to ELM (creating ER-ELM and LCM-ELM) to derive a one-step ahead prediction.

Methodology

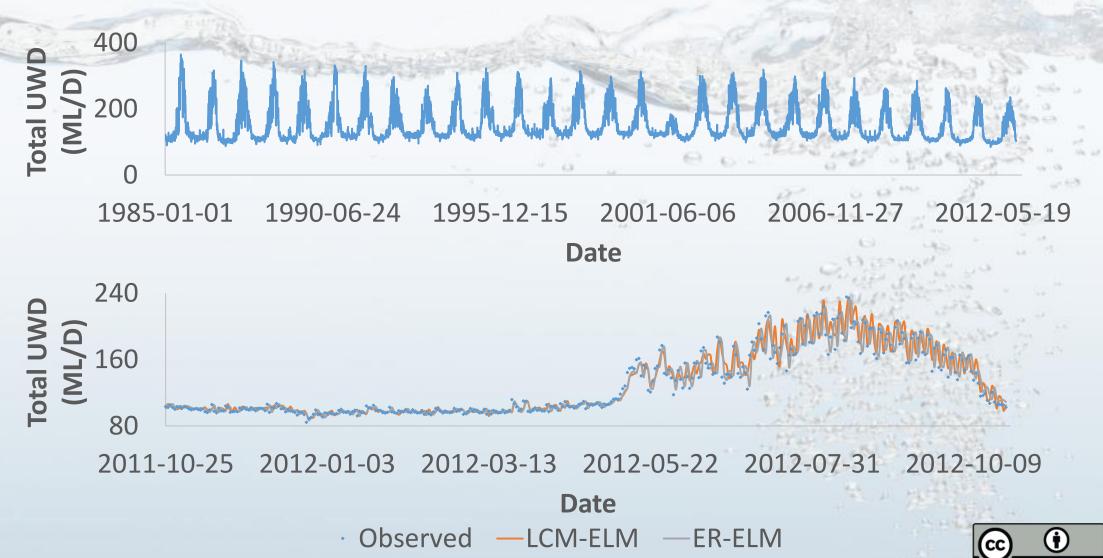
- The final 365 records were used for validation;
- Each ELM considered up to 150-250 sigmoid hidden layer neurons (activation functions);
- The one-step ahead predictions (ER-ELM and LCM-ELM) were then assessed by measures of:
 - Precision (root mean square error (RMSE)); and
 - **Efficiency** (Nash-Sutcliffe Efficiency Index (EI)).
- Model-based (ELM output sensitivity) and model-free (CMI) approaches are used to quantify time lag importance.

Results (time delay embedding)

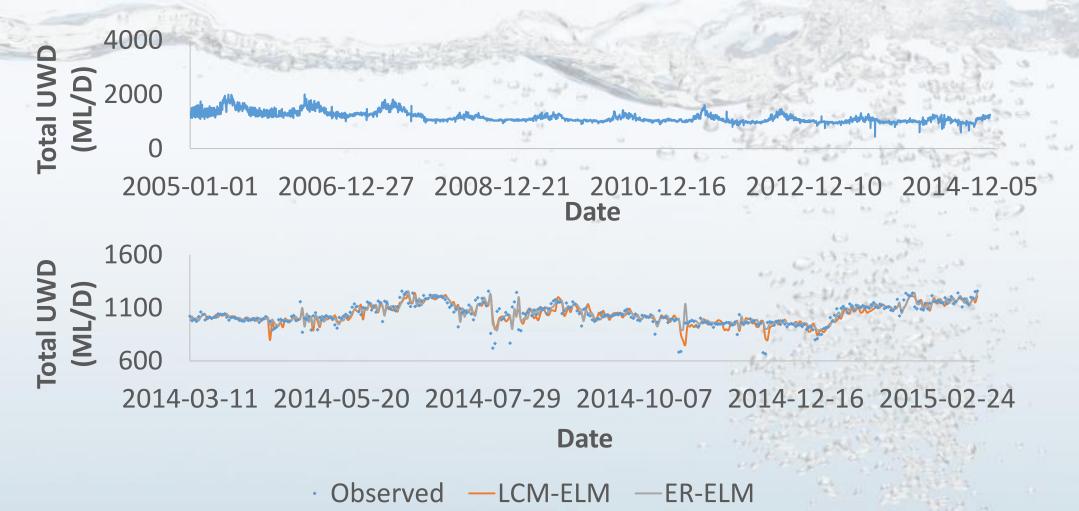
	Optimal Time Delay Embedding Parameters			# Hidden Neurons		Performance Evaluation			
	LCM*	E	R	LCM	ER	LCM	ER	LCM	ER
Time Series	m	mτ				RMSE (ML/D)		E	
Montreal (M)	14	4	7	83	4	30.265	41.846	0.911	0.830
Toronto (T)	45	2	2	91	15	72.526	72.939	0.550	0.545
Victoria (V)	106	4	7	240	6	7.899	13.577	0.957	0.872

* Time delay is fixed at 1 for the LCM method

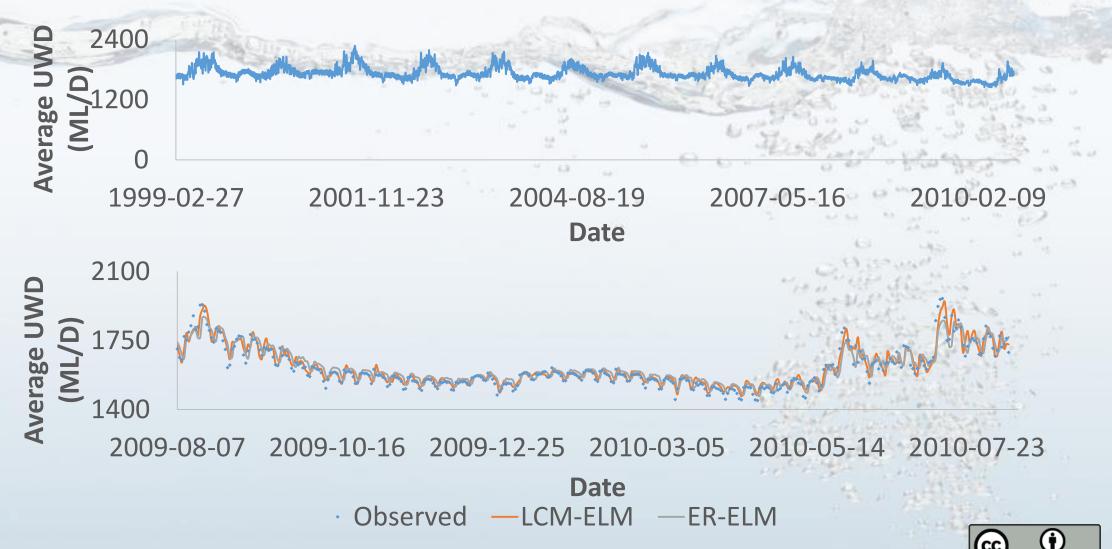
Results (Victoria time series plot)



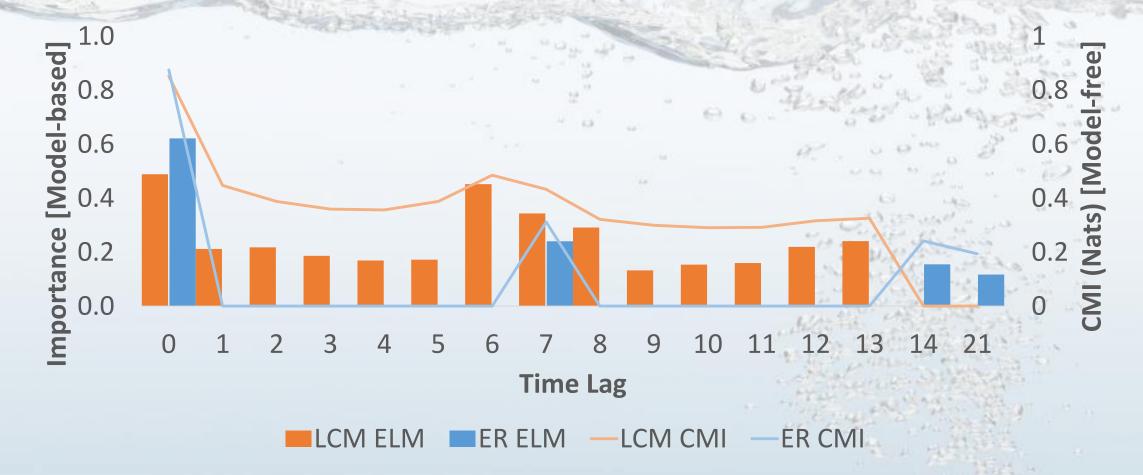
Results (Toronto time series plot)



Results (Montreal time series plots)



Results (Montreal: time lag importance)



Conclusions & Recommendations

- ►LCM-ELM outperformed ER-ELM in terms of precision (RMSE) and efficiency (EI) for each time series (e.g. V time series → EI scores: 0.957 (LCM) vs. 0.830 (ER));
- ELM based time lag importance measures confirmed via model-free approach;
- LCM provided higher dimensional lag spaces compared to ER; and
- ➤LCM-ELM models contained a larger number of parameters than ER-ELM models (e.g. T time series → # Hidden Neurons: 91 (LCM) vs. 15 (ER)).

Conclusions & Recommendations (Maximum Monthly [Average] UWD Profile for Montreal)

>LCM-ELM more accurately captured the extremes of each time series (e.g. Montreal).

LCM-ELM — ER-ELM • Observed

Conclusions & Recommendations

- Create bootstrap based versions of ER-ELM and LCM-ELM to provide confidence intervals for predictions and time lag sensitivities;
- Utilize time-frequency localized algorithms (e.g. wavelet transforms or empirical mode decomposition) to improve overall forecast accuracy and to improve prediction of outliers;
- Bootstrap based ER-ELM and LCM-ELM can be further improved by coupling with time-frequency localized algorithms; and
- Future studies should consider investigating a wider array of urban water supply system time series (e.g. reservoirs, transmission mains, automated metering infrastructure) to decipher the best approach (ER-ELM or LCM-ELM) to use in general chaotic water resources time series forecasting.

THANK YOU!

() BY

References

Adamowski, J. F., 2008. Peak daily water demand forecast modeling using Artificial Neural Networks. J. Water Resour. Plann. Manage., 134(2), 119-128.

Cover, T. M. and Thomas, J. A., 1991. *Elements of Information Theory*. Online ISBN 0-471-20061-1: John Wiley and Sons, Inc.

Gautama, T., D. Mandic, and M. M Van Hulle (2003a), A differential entropy based method for determining the optimal embedding parameters of a signal, in *Proceedings of the ICASSP-2003*, International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 29–32.

House-Peters, L. A. and H. Chang (2011), Urban water demand modeling: Review of concepts, methods, and organizing principles, *Water Resour. Res.*, 47, W05401.

Huang, G.-B., Q.-Y. Zhu, and C,-K. Siew (2006), Extreme learning machine: Theory and applications, *Neurocomputing*, 70(1-3), 489-501.

Huang, G.-B., H. Zhou, X. Ding, and R. Zhang (2012), Extreme learning machine for regression and multiclass classification, *IEEE Trans. Syst. Man Cybern. Part B Cybern.*, 42(2), 513-529.

Kodba, S., M. Perc, and M. Marhl (2005), Detecting chaos from time series, *Eur. J. Phys.*, 26(1), 205-215.

References

Small, M. and C.K. Tse (2004), Optimal embedding parameters: a modelling paradigm, *Physica D*, 194, 283-296.

Takens, F. (1981), Detecting strange attractors in turbulence, In: D. Rand and L. Young, eds. *Dynamical Systems and Turbulence*, New York: Springer, 366-381.

Tiwari, M. and J. Adamowski (2015), Medium-term urban water demand forecasting with limited data using an ensemble wavelet—bootstrap machine-learning approach, *J. Water Resour. Plann. Manage.*, 141(2), 04014053.

Wolf, A., J.B. Swift, H.L. Swinney, and J.A. Vastano (1985), Determining Lyapunov Exponents from a time series, *Physica D*, 16, 285-317.

Yung, B. B., B.A. Tolson, and D.H. Burn (2011), Risk assessment of a water supply system under climate variability: a stochastic approach. *Can. J. Civ. Eng.*, 38. 252-262.

