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Introduction

• Urban water demand (UWD):
• Nonlinear process [Adamowski et al., 2012];

• Coupled human-water-environment system;

• Function of previous demands, climate, socio-economic fluctuations, etc.
[House-Peters and Chang, 2011]; and

• Outdoor water use very important for system performance (risk, resiliency,
vulnerability)…learning about feedbacks between humans, water, and the
environment…generally dominated by recent weather.

• Models/forecasts of water resources time series may be generated
using:
• Deterministic; stochastic; and/or quasi-stochastic methods [Chow, 1978].



Introduction

• Opportunity to develop a quasi-stochastic model for UWD forecasting
(QS-UWDF) using a new (open-source) stochastic weather generation
tool (Chen et al., 2010)*:

• Stochastic weather generation + historical UWD used for input;
• Multiple runs generated (i.e. to create ensemble members);
• Each run is used to develop a deterministic machine learning model; and
• Each prediction is combined in an ensemble forecast system.

• Earlier stochastic based UWD forecasting approaches:
• Coupled ANN with either stochastic weather generation (similar to this

presentation) or GCM projected changes [Yung et al., 2011]; and
• ARMA applied after removing dominant periodicities [Mamo et al., 2013].

* http://www.mathworks.com/matlabcentral/fileexchange/29136-stochastic-weather-generator--weagets-



Problem Definition

• Given a set of daily UWD records and historical daily weather
measurements develop a quasi-stochastic UWD forecast model (QS-
UWDF); and

• Forecast UWD using the QS-UWDF model for the next 3 days ahead
and compare performance against a fully deterministic model (i.e.
only historical UWD and weather inputs) to asses efficacy of use.



Objectives

• The main goal of this study is to determine if a machine learning
based quasi-stochastic approach is suitable for short-term (daily)
UWD forecasting during outdoor water-use periods by referencing its
performance to a deterministic model.

• To accomplish our objective we incrementally combine the following
methods/tools to produce forecasts using our proposed QS-UWDF
model:
• Input variable selection (IVS);
• Weather Generator of Ecole de Technologie Superiere (WeaGETS) [Chen et

al., 2010];
• Support Vector Regression (SVR); and
• Bayesian Model Averaging (BMA).



Methodology
• Study site Ottawa, Canada

• Daily UWD records (2001-2011); and
• Historical daily weather measurements (1890-2011):

• Max and min air temperature and;
• Rainfall depth.

• Cross-correlation analysis reveals significant dependencies between UWD
and weather up to a ~ 21 day time delay:
• Each time series (historical UWD and weather inputs) were time delayed up

to 21 days;
• Model inputs:

• Deterministic  Historical weather measurements only available up to 1 day
time delay (i.e. only previous information is used);

• QS-UWDF  Stochastic weather inputs were time lagged up to day of forecast
(i.e. weather on the day of the forecast is considered in the model in addition to
previous 21 days).



Methodology
• WeaGETS:

• Rainfall occurrence first-order Markov model;
• Rainfall amountmixed exponential distribution; and
• Max and min air temperatures  first-order Markov model (conditioned on wet/dry

status).

• SVR Least- Squares SVR (LSSVR) optimized via PRESS (predicted residual sum of
squares) [Cawley and Talbot, 2004]:
• IVS Input variables determined via Conditional Mutual Information (CMI).

• BMA  Individual LSSVR models combined to provide confidence intervals over
ensemble prediction;

• The 2011 summer demand period (153 records) used for validating forecasts;
and

• Forecast quality determined via: Mean Absolute Error (MAE) and Correlation
Coefficient (CC).



Results (weather generation)



Results (selected input variables)

Input Variables (20 in total)
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Results (short-term UWD forecasts)

Forecast Lead Time (Days)

1 2 3

Method
MAE 

(ML/D)
CC

MAE 
(ML/D)

CC
MAE 

(ML/D)
CC

Deterministic 13.119 0.789 15.563 0.670 17.146 0.624

QS-UWDF 13.144 0.790 16.462 0.649 18.009 0.615



Results (1 day ahead forecasts)
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Conclusions & Recommendations

• Stochastic weather inputs or historical records are both viable inputs for short-term
UWD forecasting in Ottawa, Canada;

• QS-UWDF is competitive with deterministic modeling.
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Conclusions & Recommendations

• Deterministic model has better performance over longer lead times
(e.g. CC for QS-UWDF and Deterministic  1 day: 0.790 vs. 0.789; 2
day: 0.649 vs. 0.670; and 3 day: 0.615 vs. 0.624;

• QS-UWDF provide uncertainty assessment while deterministic only
provides point forecasts; and

• QS-UWDF may be used for risk, resiliency, and vulnerability
assessment of water supply systems.



Conclusions & Recommendations

• Low-frequency variability correction in weather generation should be
explored;

• Different stochastic simulation methods should be compared (e.g.
WeaGETS vs. k-NN stochastic simulation [Prairie et al., 2006]);

• Different model ensemble approaches can be implemented (e.g. via input
variable selection);

• Different machine learning techniques, such as Extreme Learning
Machines [Huang et al., 2006], can be utilized to improve computational
efficiency; and

• The QS-UWDF should be tested on numerous water supply systems to
further explore its practical applications.



THANK YOU!
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