Hail frequency in central Europe estimated from 2D/3D radar data and the relation to atmospheric characteristics

Michael Kunz, Elody Fluck, Sven Baumstark, Jan Wandel, Stefan Ritz, Peter Geissbuehler, Sebastian Schemm, Manuel Schmidberger

Institute of Meteorology and Climate Research (IMK-TRO)
Center for Disaster Management and Risk Reduction Technology (CEDIM)

Benke, 2014
Hailstorm Andreas, 28 July 2013

(Kunz et al., 2017)
Severe hailstorms 2013 - Germany

Data:
- 2-4 cm
- 6-7 cm
- > 8 cm

27 July
28 July
6 August

Total loss: 4.2 bn €
Insured loss: 3.3 bn €
only 27+ 28 July: 2.8 bn €

(Swiss Re, 2014)
Questions…

Hail hazard assessment?

Pre-convective conditions?

Frontal vs. non-frontal hail?
Methods: Hail estimation from radar

(1) 2D: Maximum Reflectivity (Mason, 1971)
\[Z > X \text{ dBZ} \quad X = 55 \text{ dBZ} \]

(2) 3D: Vertical Distance (Waldvogel, 1979)
\[Y \geq H_{0^\circ C} - H_{45} \text{ dBZ} \]
- Cell tracking & advection & clutter corr.
- Calibration & verification: insurance losses

(Puskeiler et al., 2016)
Radar-based hail *climatologies*

France, Belgium, Lux.
2D; 2005-2014

Germany
3D; 2005-2015

Days with hail signals
(2D/3D radar reflectivity)

(Fluck, 2017; Schmidberger, 2017)
Hail signals vs orography

- Location of hail hotspots: preferably over/downstream of mountains

\[Fr = \frac{U}{NH} \approx 0.6 \]

(mean of 70 hail events)

(Kunz and Puskeiler, 2010, modified)

(Fluck, 2017)
Hail probability vs orography

- Semi-idealized COSMO-DE simulations (2.8 km)
- Initialization: ambient conditions prior to damaging hailstorms (Fr ~ 0.6)

Flow convergence

\[\nabla \cdot \vec{v}_H = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{\partial |\vec{v}|}{\partial s} + \frac{|\vec{v}|}{R_n} \]

Convective available potential energy CAPE

(Köbele, 2014)
Hail signals vs orography

- Elevation vs. number of haildays (normalized)

(Fluck, 2017)
Track characteristics

- Hailstorm tracks vs hail size (diameter from ESWD)?

Mapping hail reports ESWD with radar-detected hailstorm tracks

(Baumstark, 2017)
Pre-convective conditions

Hailstorm tracks vs hail size (diameter from ESWD)?

Mapping hail reports ESWD with radar-detected hailstorm tracks

(Baumstark, 2017)
Pre-convective conditions

- Combination hailstreaks with ESWD data (D_max)
- **Composite of ambient conditions** around hailstreaks centered in the domain

Hail footprints from radar

Mean (percentiles) of all events
Pre-convective conditions

- Mean fields around hailstreaks

Lapse rate (1.5_5.5 km)

0-6 km wind shear

Distance from the center (km)

Distance from the center (km)

Lapse rate (1.5_5.5 km)

0-6 km wind shear

Distance from the center (km)

Distance from the center (km)
Pre-convective conditions

- Composite Lapse rate $\text{fct}(L, D)$

Max diameter hailstones (ESWD)

- < 3 cm
- 3-4 cm
- ≥ 5 cm

Track length

- < 50 km
- 50-100 km
- > 100 km

Hail and pre-convective conditions in Europe

kunz@kit.edu

21 Sept 2017

IMK-TRO, Karlsruhe
Pre-convective conditions

Composite **0-6 km wind shear** $\text{fct}(L, D)$

- **< 3 cm**
 - 9 m s^{-1}

- **3-4 cm**

- **\geq 5 cm**
 - 17.7 m s^{-1}

- **< 50 km**
- **50-100 km**
- **> 100 km**

Max diameter hailstones (ESWD)

- < 3 cm
- 3-4 cm
- \geq 5 cm

Track length

21 Sept 2017
Pre-convective conditions

- Effect of **temporal/spatial resolution**: ERA_Interim (Δx ~ 80 km, 6 hrs.) vs CoastDatIII (Δx ~ 10 km; 1 hr)

Shear

- ERA
- CoastDat

Lapse rate

- ERA
- CoastDat

- **D<3 cm, L<50 km**
- **D ≥5 cm, L>100 km**
Pre-convective conditions

- Categorical verification:
 Large hail & long track vs. small hail & tracks

Events: $D \geq 4$ cm; $L \geq 100$ km
Non-events: $D < 4$ cm; $L < 75$ km
Ambient conditions: Fronts

- Hailstreaks vs cold fronts?

Cold fronts $1^\circ \times 1^\circ$; 6-hourly; 2005-2014

ERA-Interim-Reanalysis (Schemm et al., 2015)

thermal frontal parameter

$$TFP = -\nabla|\nabla \theta_e| \cdot \frac{\nabla \theta_e}{|\nabla \theta_e|}$$

(Baumstark, 2017)
Ambient conditions: Fronts

- Relative probability of frontal hailstreaks

0.5° x 0.5°; ERA-Interim / Radar-based streaks
SHJ 2005-2014

(Baumstark, 2017)
Hailtracks: frontal vs non-frontal

- Track length: $L_{\text{frontal}} - L_{\text{non-frontal}}$ (90% percentiles)

0.5° x 0.5°; ERA-Interim / Radar-based streaks SHJ 2005-2014

(Baumstark, 2017)
Hailtracks: frontal vs non-frontal

Orientation (median)

0.5° x 0.5°; ERA-Interim / Radar-based streaks
SHJ 2005-2014
Backward Trajectories

- ERA-Interim / LAGRANTO (Lagrangian Analysis Tool)
- 182 hail events from ESWD
- Trajectories 120 hrs backwards
- Hail events: ESWD reports

(Busch, 2013)
Backward Trajectories

Ensemble mean: equivalent potential temp. θ_e and specific humidity q_v

- ERA-Interim / LAGRANTO (Lagrangian Analysis Tool)
- 182 hail events from ESWD
- Trajectories 120 hrs backwards
- Hail events: ESWD reports

(Busch, 2013)
Conclusions

- **Hail hazard assessment** from radar is robust and physically plausible

- High spatial variability of **radar-derived hail signals**:
 - large-scale: increase with distance to the sea
 - local-scale: hot spots preferably downstream of the mountains

- **Pre-convective conditions**
 - Lapse rate (maximum SE of event); ~ insensitive to diameter / length
 - 0-6 km wind shear; both diameter and track length decisive
 - Shear already captured by low temporal / spatial resolution

- **Streaks vs Fronts**
 - 15-50% of all streaks are related to a cold front; large spatial differences
 - Frontal streaks exhibit different characteristics: longer, direct. to the west,…