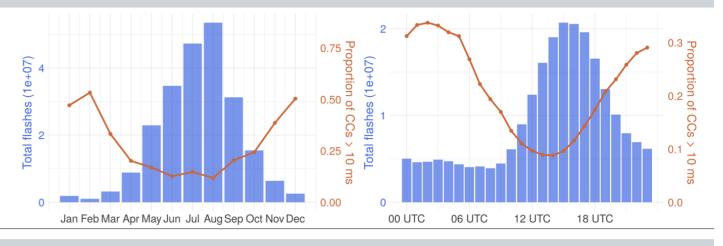
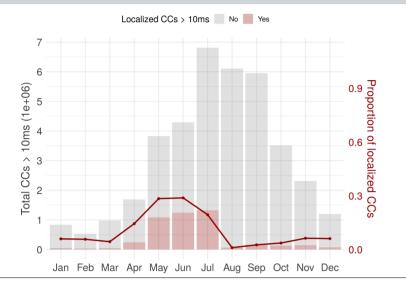
Weather that Fuels Long-Lasting Lightning


Isabell Stucke ¹ Georg J. Mayr ¹

¹University of Innsbruck, Department of Atmospheric and Cryospheric Sciences


universität innsbruck

What are continuing currents (CCs)?

- Most lightning ends after a few microseconds.
- But continuing currents persist for up to hundreds of milliseconds.
- We found that they occur proportionally more often over the ocean and coastal regions, in winter, and at night.
- 7 They often extend over tens of kilometers.

Why do they matter?

- They can transfer larger amounts of charge compared to normal lightning.
- 7 They can cause serious damage to tall structures such as wind turbines.
- Risk is highest when current flows continuously over a small area (\sim 5 km \times 5 km) \rightarrow localized large charge transfer.
- 5 Localized continuing currents peak in early summer, coinciding with conditions that also favor wildfires.

Model:

How can we study them?

Meteorological Data

ERA5 (35 variables). Source: $0.25^{\circ} \times 0.25^{\circ}$, hourly. Resolution:

Study area: Europe.

Time period: Aug 2024-Aug 2025.

Lightning Imager

Continuous optical sensing with a Measurement: resolution of ~ 1 ms.

Identification Sequences of continuous optical signals within a flash. of continuing

Machine Learning

Random Forest.

"Normal" vs. continuing currents Response:

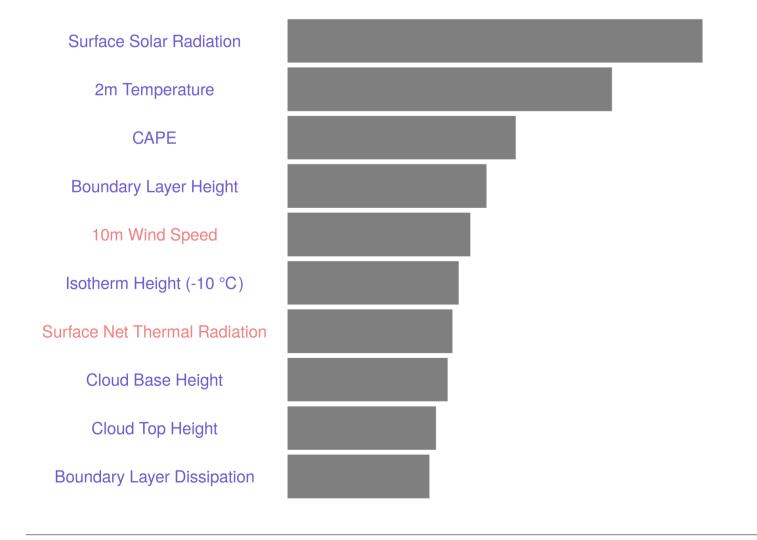
(>10 ms).

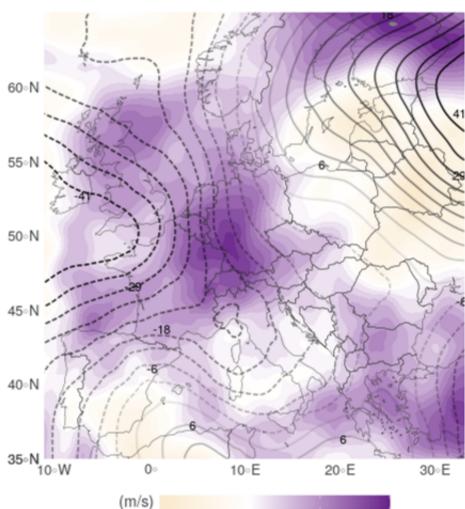
Predictors: ERA5 variables.

Ranked variable importance. Output:

Which meteorological conditions favor continuing currents?

"Normal" lightning versus continuing currents


Most of the conditions favorable for normal lightning have lower values except for wind speed and net thermal radiation.


currents:

Variable importance distinguishing between continuing currents and normal currents:

Upper-level synoptic anomalies favoring continuing currents

- Figure 1 Enhanced cyclonic circulation over Atlantic and British Isles.
- Stronger upper-level winds over central Europe.
- Anticyclonic circulation over eastern Europe.

Difference between continuing current-dominated and normal-current dominated situations in geopotential height (m) and wind speed (m/s, shaded) at 300 hPa.

Summary of insights on continuing currents

- Damage potential: Higher for continuing currents due to large charge transfer.
- * Non-typical occurrence: They are more frequent in seasons, daytimes, and regions when normal lightning activity is lower.
- Distinct regimes: They occur under distinct meteorological conditions, not randomly within normal-current environments.
- Cooler, lower clouds: They prefer lower temperatures, cloud-bases, and isotherm heights.
- Stronger winds: They prefer higher wind speeds near the surface and aloft.
- Large-scale pattern: They seem to prefer a cyclonic-anticyclonic dipole pattern across Europe.

