

Deep Learning vs. Traditional Thunderstorm Nowcasting: A Preliminary Model Benchmark Study

Philipp Straub ^a, Christoph Metzl ^a, Richard Müller ^b, Virginia Poli ^{c d}, Miria Celano ^c, Tobias Bölle ^a

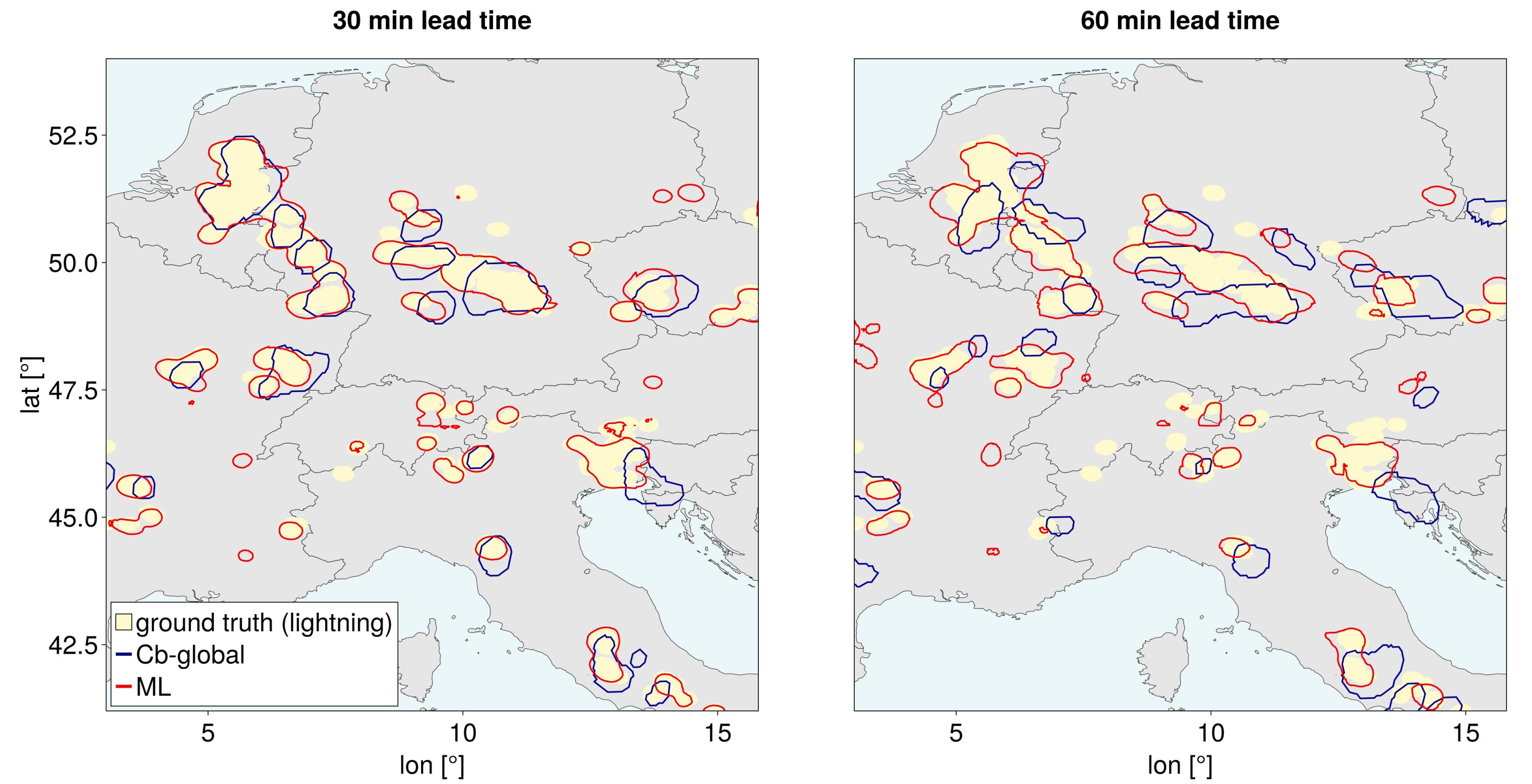
^a Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ^b German Weather Service, 63067 Offenbach, Germany

^c Arpae Emilia-Romagna, Hydro-Meteo-Climate Service (SIMC), Bologna, Italy ^d Agenzia ItaliaMeteo, Bologna, Italy

Motivation

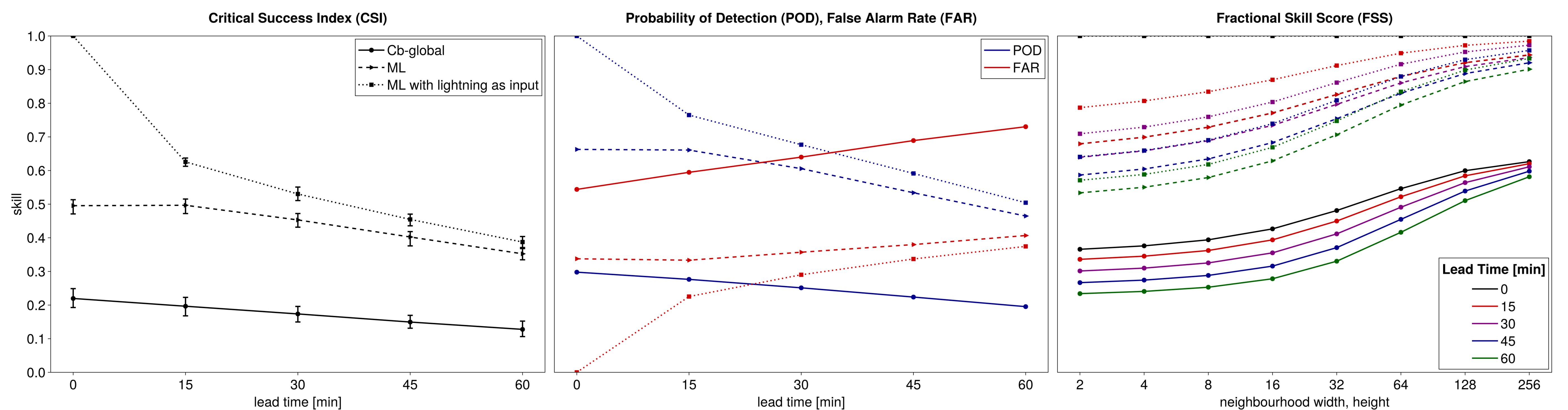
Traditional approaches to thunderstorm nowcasting employ deterministic, physics-based detection and optical flow algorithms. Recently, machine learning (ML) has emerged as an alternative and already shown promising results with ResUNet-inspired architectures proving to be a very robust baseline. ML-based methods currently represent an extremely active area of research and optimal approaches have yet to crystallise. Particularly for satellite-based thunderstorm nowcasting, the superiority of either traditional methods or a specific ML architecture has yet to be established by benchmark studies.

Setup


- Detection/prediction of lightning in 0/15/30/45/60 min based on satellite images (Cb-global, ML) and optionally lightning data (ML)
- Satellite data: MSG SEVIRI channels HRV, IR108, IR120, WV062
- Predictions are either deterministic (Cb-global) or pixelwise probabilities (ML)
- Ground truth: based on lightning data provided by LINET (at least 1 stroke within 15km, last 15min)
- Area of interest: central Europe (3° – 15.8° east, 41.2° – 54° north) with 1024x1024 grid for ML
- Evaluation period: summer (May – October) 2020
- Smaller, partially overlapping 256x256 patches from summers 2015 – 2018 are used for ML training

Evaluation

- Skill scores computed from accumulated binary predictions:
 - Critical Success Index (CSI)
 - Probability of Detection (POD)
 - False Alarm Rate (FAR)
 - Fractional Skill Score (FSS)
- The probabilistic ML model is evaluated by thresholding pixelwise probabilities at $p = 0.4$
- Skill uncertainties are obtained by bootstrapping


Models

- Cb-global (Cb-TRAM) [1]
- ResUNet-based probabilistic ML model [2]

$$\text{CSI} = \frac{\text{TP}}{\text{TP} + \text{FP} + \text{FN}}, \quad \text{POD} = \frac{\text{TP}}{\text{TP} + \text{FN}}, \quad \text{FAR} = \frac{\text{FP}}{\text{TP} + \text{FP}},$$
$$\text{FSS} = 1 - \frac{\sum_{p \in \text{grid}} (B_{\text{prediction},p} - B_{\text{ground truth},p})^2}{\sum_{p \in \text{grid}} (B_{\text{prediction},p}^2 + B_{\text{ground truth},p}^2)}$$

with $B_{a,p} = \langle b_a \rangle_{\text{neighbourhood}(p)}$

Conclusions and Outlook

- The traditional model Cb-global is consistently outperformed by ML
- Inclusion of lightning data significantly improves ML performance for short lead times
- FSS behaviour for large neighbourhoods shows that only ML reproduces the ground truth lightning climatology
- Follow-up study with additional models (NCS-A [3], NWCSAF RDT [4]) and significantly longer evaluation period
- Separate evaluation of qualitatively distinct scenarios (day/night, low/high lightning intensity)
- Integration of ML and benchmarking pipeline into community projects

References

- [1] T. Zinner et al. "Validation of the Meteosat storm detection and nowcasting system Cb-TRAM with lightning network data - Europe and South Africa". In: *Atmospheric Measurement Techniques* 6.6 (2013), pp. 1567–1583. doi: 10.5194/amt-6-1567-2013. URL: <https://amt.copernicus.org/articles/6/1567/2013/>.
- [2] Christoph Metzl et al. "Physical Scales Matter: The Role of Receptive Fields and Advection in Satellite-Based Thunderstorm Nowcasting with Convolutional Neural Networks". In: *Artificial Intelligence for the Earth Systems*. ARTICLES 4.4 (Oct. 2025). Ed. by Corey Potvin, pp. 1–18. URL: <https://elib.dlr.de/218180/>.
- [3] Richard Müller et al. "A Novel Approach for the Global Detection and Nowcasting of Deep Convection and Thunderstorms". In: *Remote Sensing* 14.14 (2022). ISSN: 2072-4292. doi: 10.3390/rs14143372. URL: <https://www.mdpi.com/2072-4292/14/14/3372>.
- [4] NWCSAF Guide. *Rapidly Developing Thunderstorm*. URL: <https://www.nwcsaf.org/web/guest/practical-guide#RDT> (visited on 11/06/2025).