Localized heavy rainfall prediction using selective cloud radar assimilation based on automated cumulonimbus tracking

*Ryohei **KATO**, Shingo **SHIMIZU**, Tadayasu **OHIGASHI**, Takeshi **MAESAKA**, Ken-ichi **SHIMOSE**, Koyuru **IWANAMI**National Research Institute for Earth Science and Disaster Resilience (NIED), Japan

1. Introduction

At NIED, we are developing a cloud radar data assimilation method that forecasts localized heavy rain from the cloud stage, before r ain begins, using data from Ka-band radars (cloud radars) which can detect small cloud droplets that precede raindrops. Kato et al. (2022, WAF) successfully forecasted localized heavy rain 20 minutes in advance from the pre-precipitation stage by assimilating the 3D structure of cumulonimbus clouds, captured every minute by three cloud radars, using a cloud-resolving numerical model (CReS S) with a horizontal grid spacing of 700m. However, the assimilation method used (nudging-based humidification of cloud regions) a ssimilated not only developing clouds but also weakening clouds, resulting in unnecessary humidification and false precipitation fore casts. In this presentation, we report on the development of a **selective assimilation method** that automatically tracks cloud radar e choes and selectively assimilates only developing cloud cells to solve this false precipitation problem and improve forecast accuracy, and we introduce the results of its validation.

2. Methodology: Procedure for Selective Assimilation of Cloud Radar Data 3. Observation Results **3** Calculation of characteristic 1 Creation of 3D Ka-band 2 Automated cloud cell identification and tracking data for extracted cloud cells (using AITCC (Shimizu and Uyeda 2012, JMSJ)) **Time-series of Maximum Reflectivity** cloud radar data (CAPPI data) (Ka-band radar) and Maximum Max Ka-band reflectivity projected Automated cell 2D characteristics 3D cloud radar data Rainfall Rate (XRAIN) for each echo onto a horizontal plane tracking by AITCC (3D characteristics) Temporal change in characteristics Max reflectivity Projecting the (REF_{max}) Area (S), etc. onto a horizontal plane Ka-band radar reflectivity Detection condition: Ka-band radar Contour: Cells detected by AITCC reflectivity \geq = -15 dBZ, Area \geq = 1 km² **4** Determination of clouds for 6 Modification of forecast initial value **5** Output of 3D reflectivity data selective assimilation of qv by nudging assimilation (%) (CAPPI) for selective assimilation Start time of NWP Time (HHMM; JST) Ka-band max reflectivity (water vapor adjustment) Reflectivity data Reflectivity data projected onto a horizontal plane after correction (Altitude 1500m) Precipitable water (mm) 15:05 (JST) **before** correction (Altitude 1500m) Time-series of the maximum value of Ka-band Conventional Selective radar reflectivity projected onto the ground 2018/08/03 15:02 (JST) 2018/08/03 15:02 (JST) **Assimilation** Extract Assimilation from CAPPI (open circles) and the maximum Developing Mature / rainfall rate from X-band radars (XRAIN; x developing marks) for echoes C1-C4. The shaded area cells only indicates the assimilation window (period) from 15:02 to 15:05 JST, meaning the Ka-band radar data (filled circles) during these 4 minutes were used for data assimilation as a **Developing** (1) d $(REF_{max})^{n}/dt \ge (9 dBZ/3min)_{s}$ control experiment. (2) S (REF \geq -15 dBZ) \geq 1 km² No assimilation (3) $REF_{max} < 35 dBZ$ (※) Nudging Assimilation (water vapor adjustment): A forcing is applied to qv (water vapor mixing ratio) to bring the for heavy rain location toward saturation, assuming 100% relative humidity in regions where cloud radar reflectivity is \geq -20 dBZ. Time Evolution during the Rapid **Development Stage of Cloud C4, which** Without Cloud Radar Assimilation (CDA) 4. Forecast Results **Caused Localized Heavy Rain** Caption (a-e): (a)-(e) 3D structure of cloud radar reflectivity (view from southwest, No rain was 4. 1 Difference in Forecast Results shaded) and surface rainfall rate from XRAIN forecasted (contours). with and without Selective Assimilation without CDA. Caption (f-j): (f)-(j) Maximum of Ka-band radar reflectivity projected onto the ground **Results of control experiments** from CAPPI (shaded) overlaid with observed Forecasted maximum rainfall rate up to 30 min surface maximum rainfall rate from XRAIN Ka-band max reflectivity projected onto a horizontal plane (dashed lines: 0.1 and 1 mm h^{-1}). a Forecast with cloud radar data assimilation 4.2 Forecast Results for Different Assimilation Windows (1-minute shifted experiments) Forecasted maximum rainfall rate up to 30 min 35.75 Developing Selective assimilation OFF Mature False rair Selective assimilation OFF 35.65 Weakening 35.60 Selective Selective assimilation assimilation 2018-08-03 15:02 (JST) False rain forecast was suppressed 139.80 139.85 Figure 2. Forecast results for different assimilation windows. (Top row) Selective Assimilation: OFF, Figure 1. (a) Vertical maximum of cloud radar reflectivity (shade) and cloud cells extracted by AITCC

5. Summary and Future Work

(contours). (b, c) the forecasted maximum rainfall rate (shade) up to 30 minutes after assimilating cloud

radar data from 15:02-15:05 for the cases (b) without and (c) with selective assimilation, respectively. The

observed surface maximum rainfall rate from XRAIN is overlaid (dashed lines: 1, 5, 20, 50 mm h⁻¹).

We advanced a cloud radar data assimilation method for high-accuracy forecasting of localized heavy rain before it starts. We developed and validated a **selective assimilation method** that uses AITCC to automatically detect and track cloud radar echoes and selectively assimilates only developing cloud cells. While the conventional assimilation method forecasted false precipitation due to humidification of weakening cells by water vapor nudging, selectively assimilating only developing cells suppressed this false precipitation. The robustness of this method was confirmed through experiments with multiple initial conditions. Future work includes applying this method to numerous cases and developing an assimilation method for situations where clouds and rain coexist.

(Bottom row) Selective Assimilation: ON. Shading and contours are the same as in Figure 1(b).

while the false rain forecast was suppressed.

In all experiments, the heavy rain forecast was maintained,

Acknowledgments: This research was supported by JSPS Kakenhi (18K13841, 18K03742, 21H01162, 22K04345). This research used XRAIN data provided by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT). This dataset was collected and provided under the Data Integration and Analysis System (DIAS), developed and operated by the Ministry of Education, Culture, Sports, Science and Technology (MEXT).