Towards Improved Hail Detection and Size Estimation Using Convolutional Neural Networks

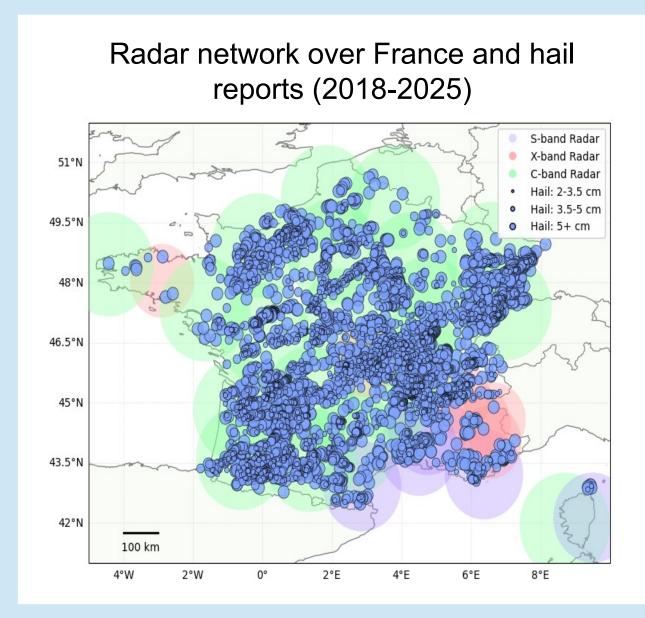
Clotilde Augros¹, Vincent Forcadell³, Louis Tariot¹, Pierre Lepetit², Olivier Caumont², Thibaut Montmerle^{2,} Kevin Dedieu³

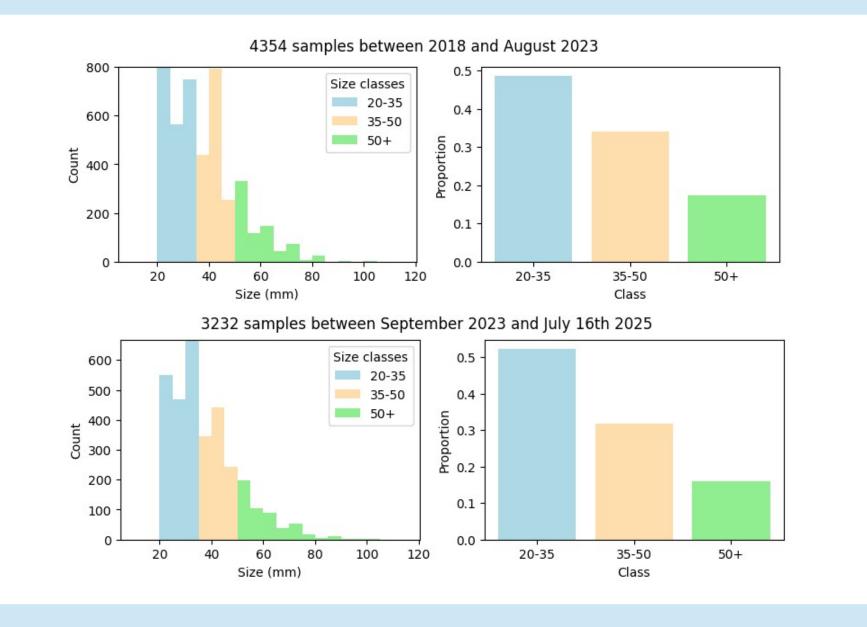
- clotilde.augros@meteo.fr
- ¹ Météo-France, CNRS, Univ. Toulouse, CNRM, Toulouse, France
- ² Météo-France, Toulouse, France
- ³ Descartes Underwriting, Paris, France

Motivation

- Hail hazard in France: Causes major damage to agriculture, vehicles, infrastructure, and solar installations; e.g., €300M insured losses from Paris hailstorm (3 May 2025).
- Limitations of current methods: Traditional radar-based hail detection struggles to predict severe hail (>2 cm) and accurately estimate size, ignoring storm morphology.
- CNN-based approach:
- > Severe hail detection : *Forcadell et al., AMT, 2024* used 19 radar-derived features (polarimetric variables, storm severity diagnostics) to detect severe hail over 30×30 km² areas. Outperforms existing hail proxies,
- Hail size estimation: Treated as multi-class classification (medium 20–35 mm, large 35–50 mm, giant ≥50 mm) using sequences of radar images over six timesteps (~25 min) to capture storm evolution: PhD V. Forcadell (*PhD thesis Forcadell 2024*)
- Ongoing work: Expanding datasets for 2024–2025 events to improve model generalization and validate CNN-based hail size predictions.

Hail reports dataset

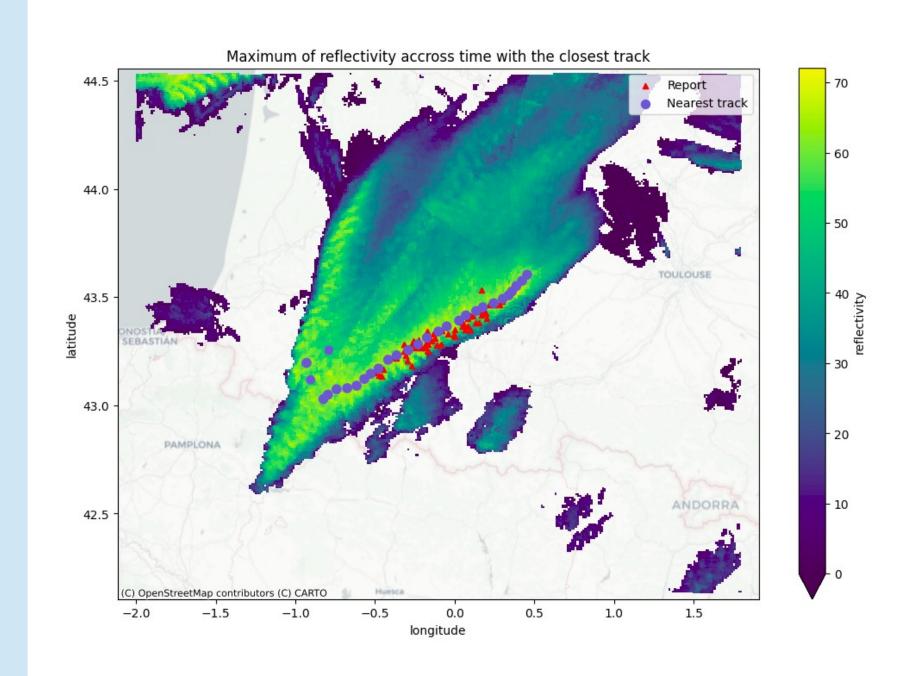




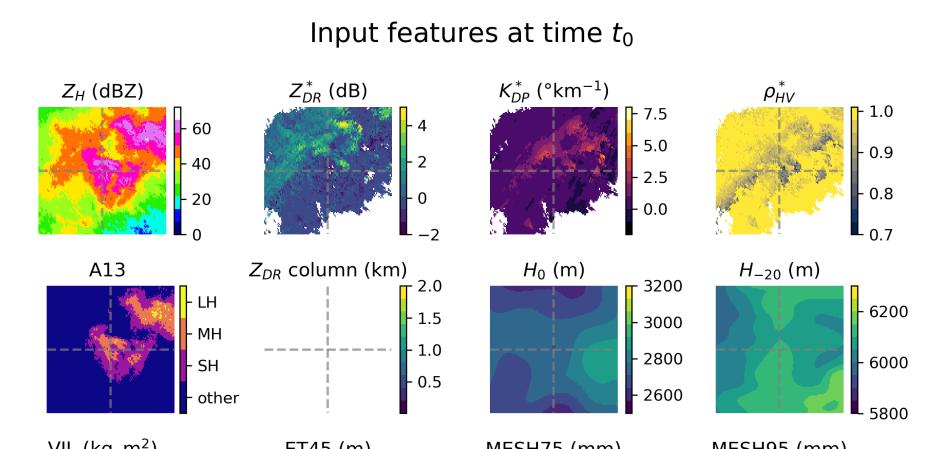
Methodology

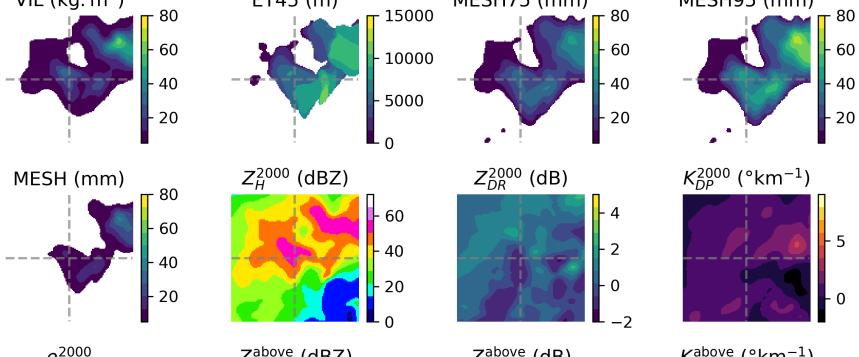
1. Storm cells are tracked and matched to the severe hail reports

- using tobac (Heikenfeld, 2019) python library applied on radar Zh composite
- only cells of 25 minutes (6 timesteps) are kept
- Cells are labelled with the average size of all reports within the cell enveloppe at t0



2. Radar diagnostics within 30x30 km2 areas are computed from 3D radar grids for each cell centroïd = predictors





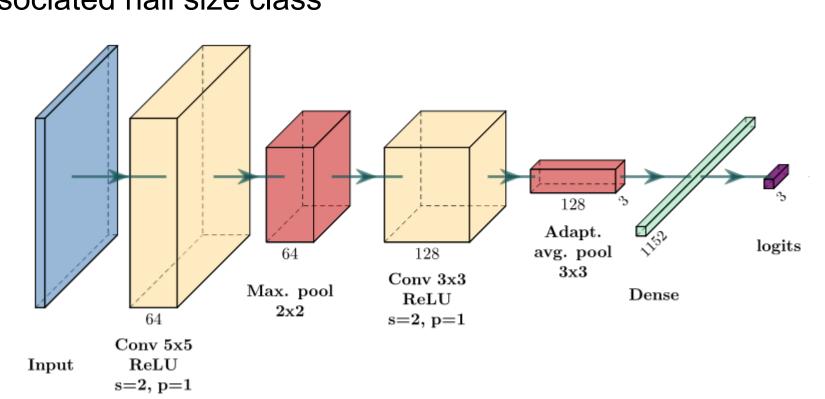
 ρ_{HV}^{above} - 0.7 ρ_{HV}^{above} - 1.0

- 0.9

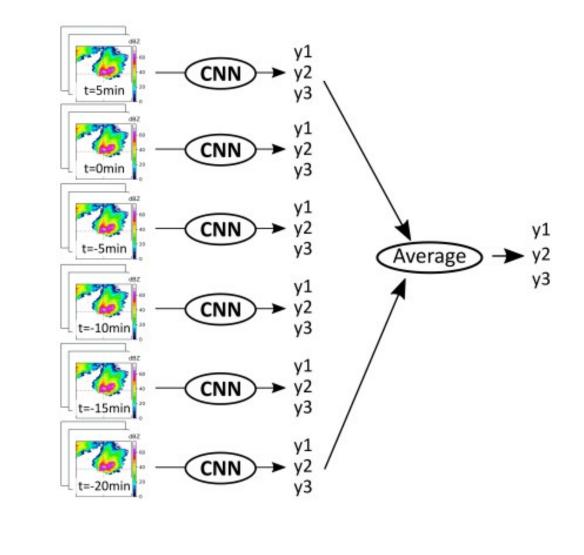
- 0.8

- 0.7

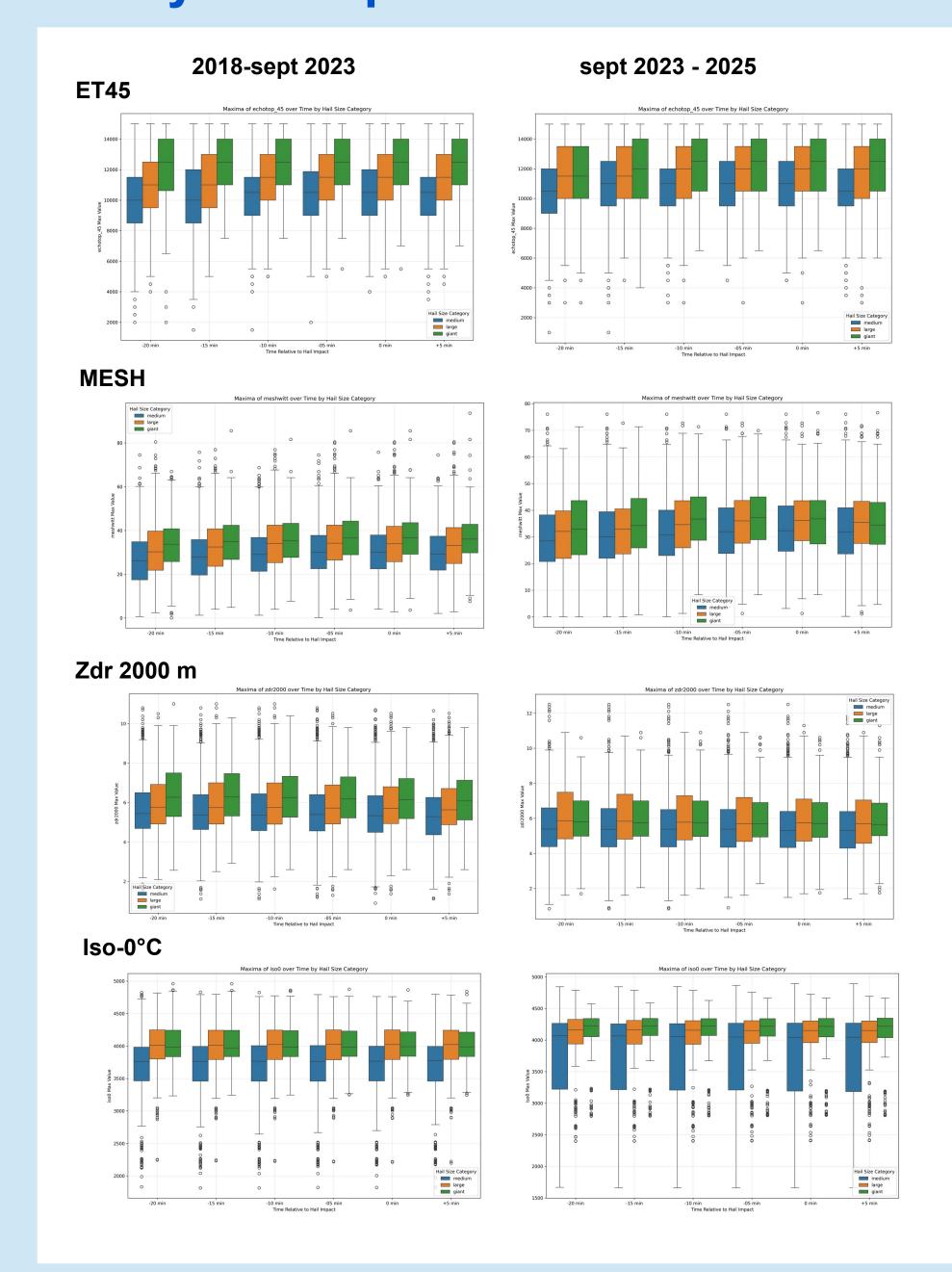
3. Predictors (30x30 km2 images) are fed as input to CNN (Medium ConvNet, see Forcadel 2024), trained to predict the associated hail size class



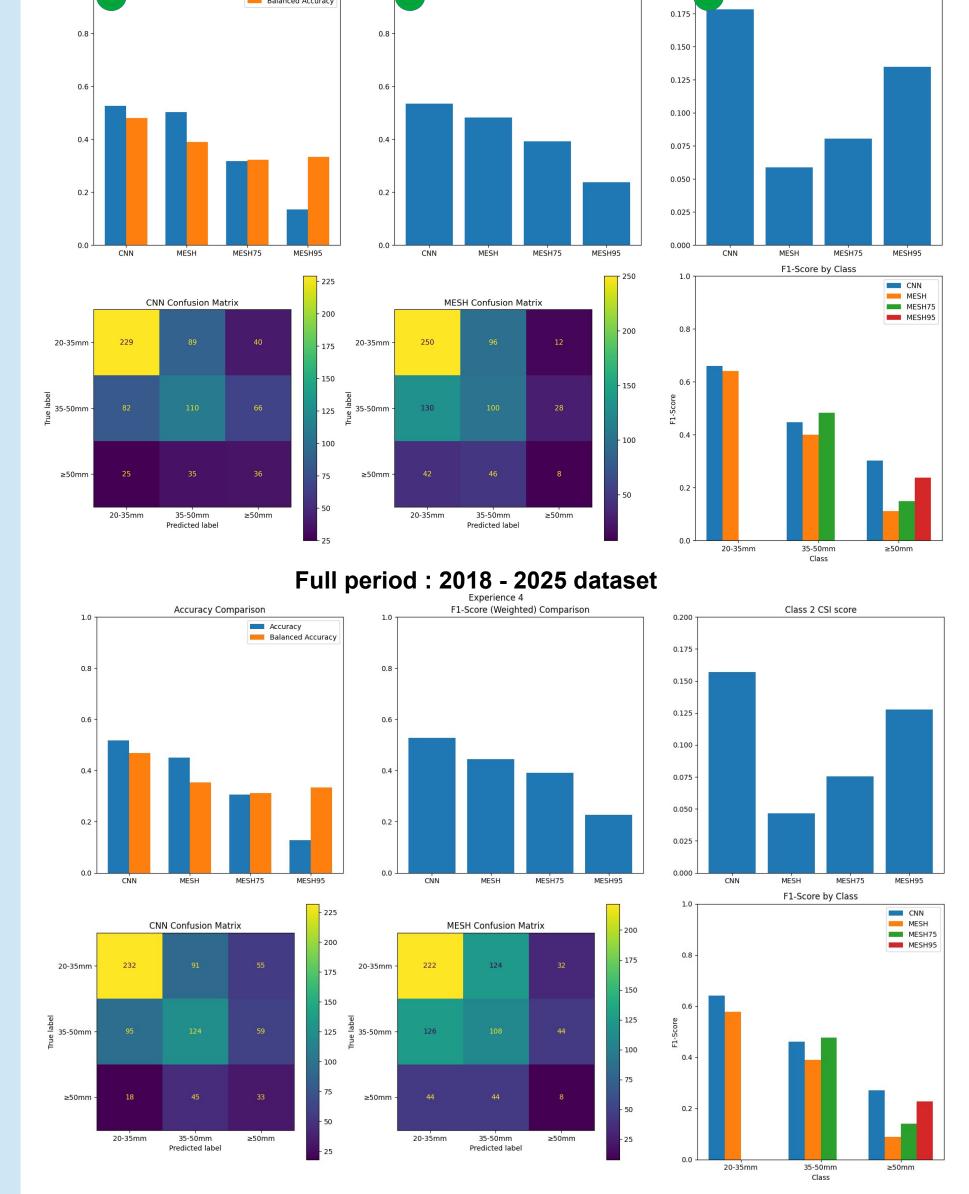
4. Temporal aggregation : the probabilities of each hail size class are averaged within the 25 minutes period



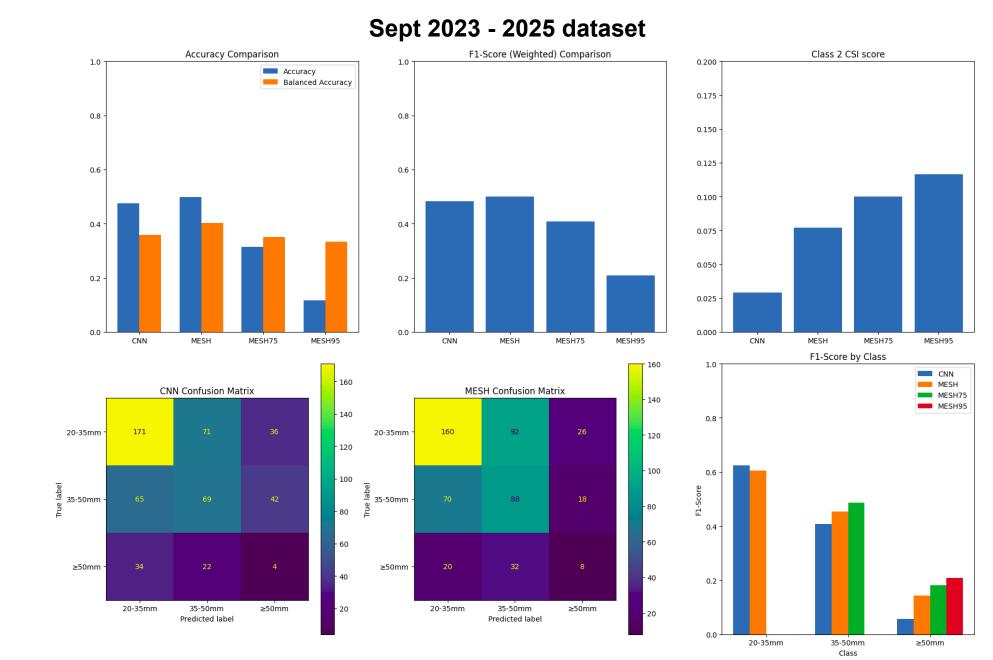
Study of the predictors



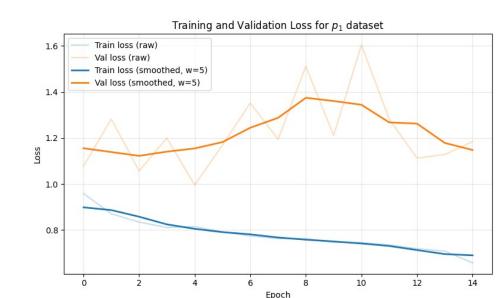
Performance of the CNN and comparison to MESH



2018 - sept 2023 dataset



- Scores are similar for all periods subsets
- Not improved with the addition of new reports (2023-2025)
- CNN often outperforms MESH but performance varies with hail class size and remains limited...
- ⇒ During training and validation, the CNN model struggles to reach a minimum



Conclusions and future work

- Extension of previous work: The Forcadell et al. (2024) study was expanded in V. Forcadell's PhD thesis to focus on hail size discrimination.
- **Application to new data**: The method was applied to a new radar-feature dataset covering hail events from 2024 and 2025.
- Feature analysis insights: Certain predictors show strong potential for discriminating hail size, with consistent behavior across both datasets.
- Performance comparison: The CNN consistently outperforms MESH, although overall skill remains limited.
 Ongoing work: Additional tests are underway, supported by the scientific visit of Hernan Bechis (Argentina), who is also adapting the algorithm for use in Argentina.

References

- Forcadell, V. (2024). Hail detection using deep learning applied to dual-polarisation radar observations [Phdthesis, Université de Toulouse]. https://theses.hal.science/tel-05070872
- Forcadell, V., Augros, C., Caumont, O., Dedieu, K., Ouradou, M., David, C., Figueras i Ventura, J., Laurantin, O., & Al-Sakka, H. (2024). Severe-hail detection with C-band dualpolarisation radars using convolutional neural networks. Atmospheric Measurement Techniques, 17(22), 6707–6734. https://doi.org/10.5194/amt-17-6707-2024
- Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., & Stier, P. (2019). tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets. Geoscientific Model Development, 12(11), 4551–4570. https://doi.org/10.5194/gmd-12-4551-2019