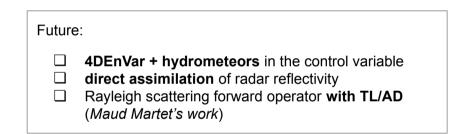


Improving AROME NWP Polarimetric Radar Simulations: Selection of Optimal Microphysics and Enhancement of the Radar Forward Operator

Clotilde Augros, Cloé David, Benoît Vié, François Bouttier

Météo-France, CNRS, Univ. Toulouse, CNRM, Toulouse, France.



Motivation

- Accurate initialization of NWP models via data assimilation → crucial for reliable forecasts.
- Radar observations = key contributors in km-scale NWP data assimilation systems
- AROME-France assimilation system:

Current: 3DEnVar (Brousseau et al., 2025), preprint https://doi.org/10.5194/egusphere-2025-2642 reflectivity assimilated via Bayesian humidity retrievals (Caumont et al 2010, Wattrelot et al 2014)

Motivation

- Accurate initialization of NWP models via data assimilation → crucial for reliable forecasts.
- Radar observations = key contributors in km-scale NWP data assimilation systems
- AROME-France assimilation system:

Current: 3DEnVar (Brousseau et al., 2025), preprint https://doi.org/10.5194/egusphere-2025-2642 reflectivity assimilated via Bayesian humidity retrievals (Caumont et al 2010, Wattrelot et al 2014) Future: 4DEnVar + hydrometeors in the control variable direct assimilation of radar reflectivity Rayleigh scattering forward operator with TL/AD (Maud Martet's work)

- Polarimetric radar observations:
 - Preliminary Zdr and Kdp data assimilation studies with AROME (*Augros et al., 2018, Thomas, et al. 2020*)
 - But: not yet operationally assimilated in AROME-France
 - Require more accurate simulation of polarimetric variables via:
 - reliable polarimetric radar forward operators (PRFO)
 - accurate microphysics scheme in the NWP model

Objectives

1. Evaluate polarimetric radar simulations using AROME:

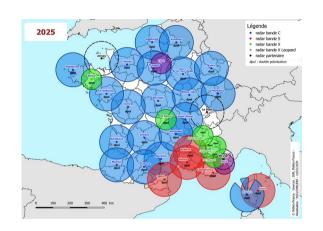
- > with ICE3 (1-moment) & LIMA (2-partial moment) microphysics schemes
- > using existing polarimetric radar PRFO (Augros et al, 2016)
- focus on severe convective cases

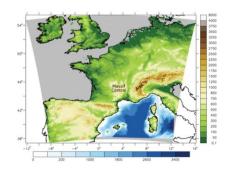
2. Implement & evaluate new options in:

- > the polarimetric radar forward operator
- > the microphysics schemes

Data overview

Case selection


- 34 convective days in France (2022)
- selected for hail >= 2 cm occurrence via **ESWD** database (*Dotzek et al., 2009*)


Radar observations (ARAMIS network – Météo-France)

- 33 Doppler dual-pol radars S, C, X => in this study: use of C and S bands only
- Variables used: ZH, ZDR, KDP
- Quality-processed from operationnal polarimetric processing chain (*Figueras et al.* 2012)
- Interpolated to 3D Cartesian grid (1 km horizontal, 0.5 km vertical) using Py-ART (Helmus and Collis, 2016)

6 AROME-France NWP model

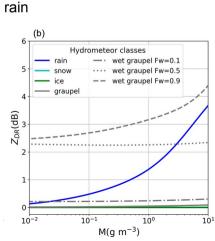
- 1.3 km resolution, 90 vertical levels, re-forecasts with 5-min outputs (Seity et al 2011, Brousseau et al 2016)
- Two microphysics schemes:
 - > ICE3 (*Pinty and Jabouille, 1998*): operational, **1-moment** for cloud droplets, rain, snow, graupel, ice crystals):
 - LIMA (Vié et al. 2016): research, partial 2-moment for cloud droplets, rain, ice crystals

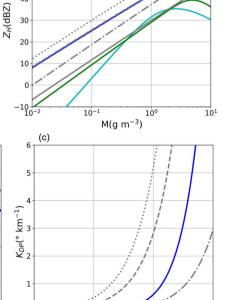
Data overview

- Radar forward operator: Augros et al. (2016), enhanced by Le Bastard (2019)
 - T-matrix scattering: hydrometeors as oblate spheroids (*Mishenko and Travis, 1994*)
 - Axis ratio:
 - o graupel, wet graupel following *Ryzhkov et al. (2011)*
 - o dry snow: D < 8mm: AR=1-0.025D, D >=8 mm: AR=0.75
 - ice : spheres
 - Oscillation: neglected
 - Particle Size Distributions and mass-diameter laws inherited from ICE3 or LIMA
 - Mixed phase model for wet graupel :
 - o graupel transferred to wet graupel category if coexists with rain
 - wet fraction Fw= Mr / (Mg + Mr)
 - Dielectric function:
 - Debye (rain)
 - Maxwell Garnett (combination of ice, air and water)

https://github.com/UMR-CNRM/operadar

ZH, ZDR and KDP after integration over PSD (ICE3, 1-moment), for $T=0^{\circ}C$

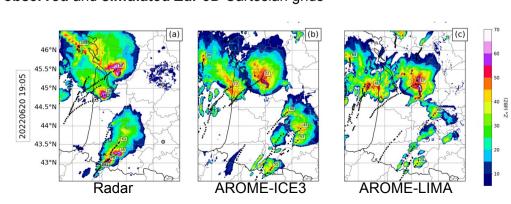

Data overview


- Radar forward operator: Augros et al. (2016), enhanced by Le Bastard (2019)
 - **T-matrix scattering**: hydrometeors as oblate spheroids (*Mishenko and Travis, 1994*)
 - Axis ratio:
 - o graupel, wet graupel following Ryzhkov et al. (2011)
 - o dry snow : D < 8mm: AR=1-0.025D, D >=8 mm: AR=0.75
 - ice : spheres
 - Oscillation: neglected
 - Particle Size Distributions and mass-diameter laws inherited from ICE3 or LIMA
 - Mixed phase model for wet graupel :
 - o graupel transferred to wet graupel category if coexists with rain
 - wet fraction Fw= Mr / (Mg + Mr)
 - Dielectric function:
 - Debye (rain)
 - Maxwell Garnett (combination of ice, air and water)

https://github.com/UMR-CNRM/operadar

ZH, ZDR and KDP after integration over PSD (ICE3, 1-moment), for $T=0^{\circ}C$

10°

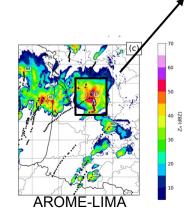

 $M(g m^{-3})$

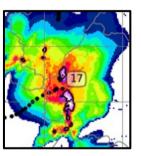
10-2

Methodology

- **Traditional evaluation**: quantitative precipitation forecast evaluation
- Object-oriented framework:
 - Storm cell detection & tracking: **tobac** Python package (*Sokolowsky et al., 2024*)
 - Cell cores analysed with max Zh = 40 dBZ
- ZDR column detection :
 - o adapted from Snyder et al (2015), Kuster et al (2019)
 - o Zdr threshold : 2dB, Zh threshold: 25 dBZ
 - o vertical continuity is imposed
 - o applied on **observed** and **simulated Zdr** 3D Cartesian grids

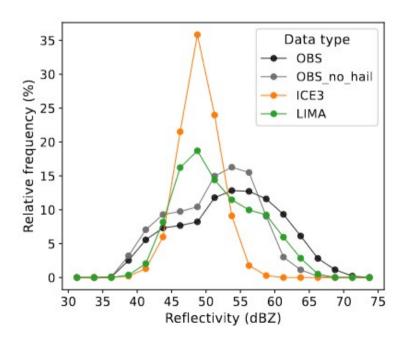
Example of max Zh maps with cell centroid tracks



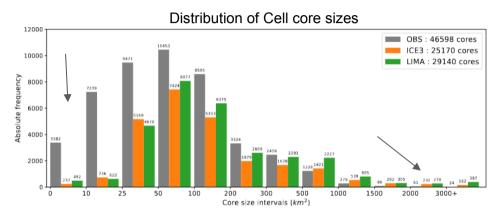

Methodology

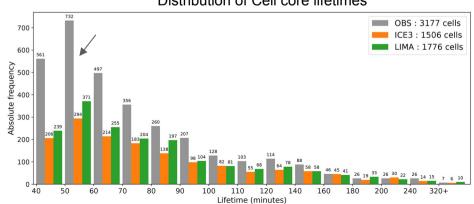
- **Traditional evaluation**: quantitative precipitation forecast evaluation
- Object-oriented framework:
 - Storm cell detection & tracking: **tobac** Python package (*Sokolowsky et al., 2024*)
 - Cell cores analysed with max Zh = 40 dBZ
- ZDR column detection :
 - o adapted from Snyder et al (2015), Kuster et al (2019)
 - o Zdr threshold: 2dB, Zh threshold: 25 dBZ
 - o vertical continuity is imposed
 - o applied on observed and simulated Zdr 3D Cartesian grids

Example of max Zh maps with cell centroid tracks



17 = cell identification black contours = Zdr columns


Convective Cell Intensity


Max reflectivity per cell:

- **Observed** peak: ~55 dBZ
- ICE3 & LIMA peaks: ~48.5 dBZ
- LIMA better reproduces the largest reflectivities (>60 dBZ): comparable to largest observed reflectivity values with no radar detected hail
- improved performance in simulating intense cores with LIMA due to **2-moment rain (larger drops)**

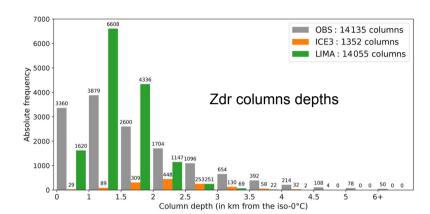
Convective Cell Size and Duration

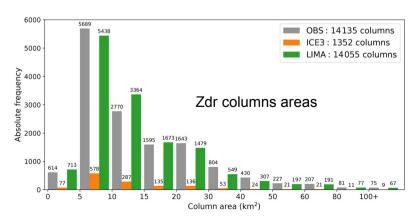
Distribution of Cell core lifetimes

Number of cells cores (ZH ≥ 40 dBZ):

• Underestimated by both ICE3/LIMA

Cells' core sizes:

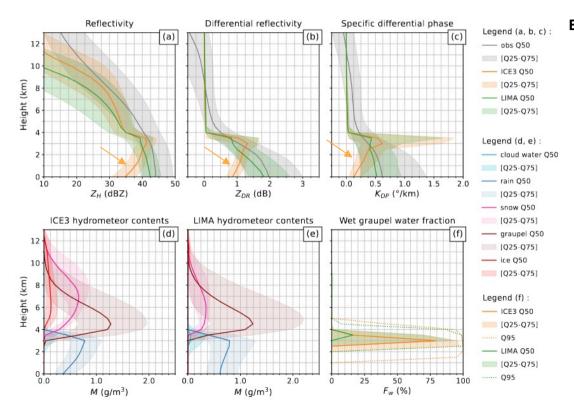

- Underestimation of small cells sizes (< 50 km²)
- Overestimation of very large cells sizes (> 1000 km²)


Cells' core lifetimes:

AROME with both schemes miss short-lived cells

Partly due to the larger explicit model resolution ($\sim 9\Delta x$ = 11 km, Ricard et al. 2012) // 1 km for radar grid

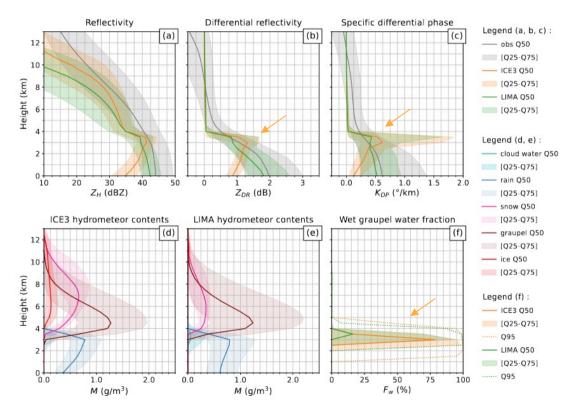
Zdr columns: depth and area distributions


LIMA:

- remarkable similar number of simulated Zdr columns compared to observations
- miss the lowest depths (< 1 km) and areas (< 5 km²)
- not able to simulate the Zdr columns with depths above
 3.5 km

ICE3:

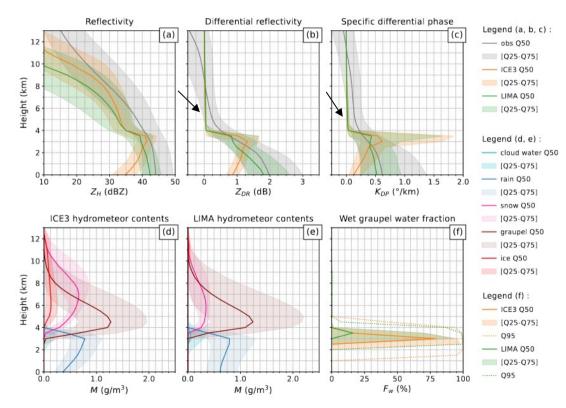
- strong underestimation of the number of Zdr columns
- but is able to simulate depths until 4.5 km
- less Zdr columns in ICE3, but slightly more intense (more rainwater available at negative temperatures within the columns leads to higher graupel wet fraction => higher Zdr)


Vertical Profiles (CFADs): ZH, ZDR, KDP

Below melting level (~0-3 km):

- ICE3 strongly underestimates ZDR & KDP (likely over-evaporation)
- LIMA matches observations much better (larger raindrops → better ZDR) thanks to prognostic raindrop concentration → more realistic DSD

Vertical Profiles (CFADs): ZH, ZDR, KDP


Below melting level (~0-3 km):

- ICE3 strongly underestimates ZDR & KDP (likely over-evaporation)
- LIMA matches observations much better (larger raindrops → better ZDR) thanks to prognostic raindrop concentration → more realistic DSD

Melting layer (~3-4 km):

- ICE3 exaggerates the bright band (more wet graupel)
- LIMA has a weaker BB

Vertical Profiles (CFADs): ZH, ZDR, KDP

Below melting level (~0-3 km):

- ICE3 strongly underestimates ZDR & KDP (likely over-evaporation)
- LIMA matches observations much better (larger raindrops → better ZDR) thanks to prognostic raindrop concentration → more realistic DSD

Melting layer (~3-4 km):

- ICE3 exaggerates the bright band (more wet graupel)
- LIMA has a weaker BB

Above melting layer:

- ZDR & KDP quickly drop to zero in both schemes
- Forward operator limitations ?

Conclusions & Outlook

▼ Comprehensive Model Evaluation

Evaluation conducted on convective cases using two microphysics schemes: ICE3 (one-moment) and LIMA (partially two-moment).

✓ AROME QPF Scores (not shown)

No significant difference observed between the two microphysics schemes.

LIMA Strengths

Better simulation of Zh, Zdr, and Kdp in convective rain Zdr columns occurrence, width, and lifetime.

X PRFO Limitations

ZDR and KDP values too weak above the melting layer.

David et al. (2025)

Research article | @①

Improved simulation of thunderstorm characteristics and polarimetric signatures with LIMA two-moment microphysics in AROME

Cloé David ☑, Clotilde Augros, Benoit Vié, François Bouttier, and Tony Le Bastard

https://doi.org/10.5194/amt-18-3715-2025

Conclusions & Outlook

Comprehensive Model Evaluation

Evaluation conducted on convective cases using two microphysics schemes: ICE3 (one-moment) and LIMA (partially two-moment).

AROME QPF Scores (not shown)

No significant difference observed between the two microphysics schemes.

LIMA Strengths

Better simulation of Zh, Zdr, and Kdp in convective rain Zdr columns occurrence, width, and lifetime.

X PRFO Limitations

ZDR and KDP values too weak above the melting layer.

Ongoing Investigation

Sensitivity to axis ratio, oscillation, and mass-diameter relations.

At Météo-France

Ongoing evaluation of AROME-LIMA with different configurations over longer periods, incorporating all standard NWP scores and radar CFADs (collab. with Benoît Vié and Clément Strauss)

David et al. (2025)

Research article | @①

Improved simulation of thunderstorm characteristics and polarimetric signatures with LIMA two-moment microphysics in AROME

Cloé David ⊠, Clotilde Augros, Benoit Vié, François Bouttier, and Tony Le Bastard

https://doi.org/10.5194/amt-18-3715-2025