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Introduction Modelling the growth of Gib04a based on cave monitoring data

Background and rationale How stalagmite growth rate is modelled
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Stalagmites are able to provide precisdted, multiproxy records of late Quaternary climate change on many timescales, from GibO4a. site 1 . _ ‘ h
glaciatinterglacial shifts (e.g., Chergal., 2009) to seasonal fluctuations (e.g., Johnebal., 2006). However, comprehensive '. A 1. Det_ermler;efaipp rom measured cave atmosphepEQ
reconstructions of regional palaeoclimate require robust quantitative relationships between staladfidtand regional '. . T o [ ' = 2. Estimate? from measurgd_ cave air tempgrature
precipitation isotopic patterns that are applicable and reproducible over different timescales (Fischer and Treble, 28@8; Jon . I,-H ° [ ) -. 800 5 3. Set :Jthﬁf gfgrtl)lwthdetermln!ng pa;QT]edtefS, %-QL,andJ_‘ITI o "
al., 2009). As collective understanding of the controls on precipitatid® has progressed (e.g., Baldinal, 2010) and the full | | ) .' | =y 4. App yht €10 O\I/Ivlng eguanoln, w 'C_ ?j.cr.' els Vertlcé ca cge gmcumu e.ltlcn
range of climatic processes to which speleothem geochemistry may respond becomes more fully appreciated (Lachniet, 2009), 80O 1 L N S \ g rate theoretically (Bakeet al,, 1998; Baldiret al, 2008; Dreybrodt, 1999)'
researchers are increasingly adopting approaches involving calibration efdsiglution proxy data against instrumental recerd 00 |\ T | T - 700 & R =1174(C C SAT 1 —mﬂTS
(e.g., Bakeet al., 2007; Jeet al., 2010) and seeking to understand the hydrology and internal environments of individual cave | /A eN - S o — ( a-— aapp)( )
before attempting to select and sample speleothem for proxy data retrieval and interpretation (Btete\2010; 2 600 - y ! N
Sy.StemS. . . . o . . . . ' '-E ¢ * where: the constant 1174 converts molecular accumulation rate of calcite (mm()’I $‘ﬁ)n'nto vertical growth
Miorandiet al., 2010). One important feature of cave systems is seasonality in ventilation, which has implications for the ratqg and T o0 rate (mm &'); Cais the initial calcium cation concentration, fJaof the dripwater (mmol £); Caypis the [C47] of
timing of speleothem deposition (Spé&t al., 2005), and is therefore a potential source of bias in conservative proxy records £ that same dripwater at equilibrium with a given (cave) atmosphg@@ (mmol L);  is the maximum thickness
(Baldiniet al 2008) 5 (mm) olf(th)e f|Inc;1 c})\f (Ealmlunsa&;Eat;dydgpyvig%sogg;ﬁ?vs;nz?ﬁeg;pe&;gm_mg stalagmites the drip
" ' & 400 o interval (s); an a - u a aitive t ge a ient cave temperature.
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states, segregate £fO and H'"®O molecules, which include seawater evaporation, vapour condensation, moisture transport, ' . -
continental evaporation, moisture recycling, Rayleigh distillation, and precipitation type (Dansgaard, 1964; Gat, 199&idRozan 200 , *i_,-;*-._# to 4 '. __..*"" L
al., 1992). Some or all of these processes are responsible for the oxygen isotopic composition of rainwater entering any given 5000 - * | NS '. I.-' 15 & 05
karst system, so their impact on speleotheiO variability at sites of interest should be quantified. One approaching to this is s000 L I. 4 « ., .E.
numerical forward modelling This approach is justified because, although modern instrumental data span time scales that njay '. ._,*-1-" , w,-' w‘T . 10 ¥ 04 1 -
be shorter than even a single stable isotope analysis sample from a speleothem, the amplitude of variability in modesxyand|pr _ 70007 ¢ v |- |
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processes, were not different in the past (Dayenal., 2010). ] 5000 . 1 Mt | = i | L f } /
H‘ 4000 7 Y 1 'I. .‘ 4;I| |I =Eh T *i- *: ﬁ I |Flr | I
3000 Nt A | E /N . ] | —"
7 " (4 [ < 01 - " e -
2000 - |} T SALIENT € O ti i \/ || N/
F Ayl ¥ | N, Mg I.II
4 — \ Y Y og - NA TY] Y 0.0 “: | _.ﬂ‘x 'II e H—_'.'
u s ! « N | \ ]
{udzRe aAuUsSY bSg {u aA | F. Z D)\ Ul NJ I Y.
. 0.1 - NO GROWTH b I
2004 2005 2006 2007 2008 2004 l i
Year -0.2 T
Gibralt Fog = b 2005 2006 2007 2008 2009
ibraltar e Old St Michaels Figure2/ | @S SYGANRYYSyidlf Y2yAG2NAy3a |G |[|[0KS DAonant &AGS Ay Yaar
H 1 Cave Strong seasonality is present in the data.

o0 . Figure 3Modelled stalagmite growth rates from cave monitoring data at GibO4a site. Where growi
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show cave black). Despite strong seasonality in cave monitoring data (Fig. 2), the modelled growth rate pattein is

520 | more complex, showing higiequency fluctuations.
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ek L el Wi Clgar seasonality is present in the cave monitoring datdpwater conductivity, drip site discharge,
Rift St Michaels Gib04a dripwater [C&"], and cave aipCQ (Fig. 2).
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&G'bm > However, the pattern of stalagmite growth modelled from these datasets is not a neat seasonal patteyn (Fig|
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an altitude of ~1.25 km towards the northeabiset location of Gibraltar.k) Location of sampling site of the
stalagmite Gib04a, and at which cave monitoring took plade.digital topographic and satellite overlay imagery are
© Google 2010 . Map and cave survey adapted from Madtesl., 2010.

particularly

3). Highfrequency fluctuations are superimposed onto growth rate seasonality, and growth is discontinuous
over the 4year monitored period, despite continuous dripwater supply.
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rue continuous stalagmite growth may be rare, given the spatial and temporal variability in cave
o . _ i B ) R air pCQ and dripwater [C&], and such features may difficult to identify in stalagmite petrography (Fig.[4).

Qa /I 9S] ONBR | NN& 60 O] |fifufe 4¥akrd dnkidmidrohidtusésdn GTobdBa) A petrographic hiatus, visible to the naked eye, separates anci¢ (ka) Characterisi

and modern (1952004 AD) growthly c) Microhiatuses, such as those due to higiquency fluctuations in growth

determining parameters, are only visible by higlagnification microscopy or electron backscatter grain boundary maps.

ing stalagmite growth rate variability is important for figgolution studies of palaeoclimate,
those of more recent palaeoclimate change.

A stalagmitet **0 numerical forward model

Inferring source regions of Gibraltar precipitation

Figure 5Schematic illustration of the major oceanic, atmospheric, rainout, and hydrological processes which
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Figure 8Inferred source regions of Gibraltar precipitation during the perioc
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RS (G S NI A Y | -KaStQystén, AoYtonipr&hensive quantitative models exist that can predict the effects of
various climate fluctuations and karst hydrology on stalagrit®.

the mixing function of Bakest al., 2007.

Figure 6. Schematic representation of the architecture of a numerical forward model designed to genera 5
pseudoproxy stalagmite'®O time series datasets. This model approximates karst hydrological processes vith

il trajectory analyses is required.

Figure 7 Example ensemble back trajectory analyses performed using the HYSPLIT Ma&)édémeMmber 1996 andb)
December 1981, which illustrate Mediterranean and North Atlantic oceanic sources regions of Gibraltar precipitation. Dhly 1180 dataset is that of LeGrande and Schmidt, 2006.
one Mediterranean source region was found during the period 1814, suggesting that a more comprehensive set of badk

1951-2004, designated A to I. Regions A to H span much of the North Atlaintic
Ocean, while only one Mediterranean source region was found (). Seawatdqr

Generating pseudoproxy 20 time series data

Stalagmitet **0 may reflect multiple, interelated climatic and hydrological processes (Fig. 5). As a result of this complexity, thene exiantitative models that capredictthe theoretical run to generate precipitation °O data, and these were compared to g’st”“g‘elpta'. (G';'r:p‘)lgo
response of stalagmite*®O to climate fluctuations. A numerical forward model (Fig. 6) has been created as a first step towards this goal. Thel medetitFig. 6) requires three input instrumental data for Gibraltar, obtained from the Global Network for 2ppronch of Baker and
datasets sea surface temperature (SST), sea surface relative humidity and seaw@terin order to generate norstochastic pseudoproxy'?0 time series data. However, before these d4ta Isotopes in Precipitation (GNIP; IAEA/WMO, 2010). (Gibraltar benefits from Bradley, 2010, both
can be obtained, we must first establish the (oceanic) source(s) of Gibraltar precipitation during the period of modenroh@i®4a (1952004). To this end, the National Oceanic and one of the longest instrumental records of precipitatiotiO.) Both the model datasets were weighted
Il §Y2ALIKSNAO ' RYAYAAGNI GA2Yy Q& o6bh! 10 1806NAR {Ay3If S t lolNdi2063fwas enplded Tifidnmotefwas rynifod wintdr fofitRs |[¢ NI 2 S output and GNIR 0 data were regressed against amount of hydrologieall DA v
during selected years during the period 195In nm Ay 2NRSNJ (2 S&dl 6f AaK Wieé LA Ots{SOT, rl@ighymidiyhuNdasatERBvare abiter for [y R | A y Lidz effective precipitation. The resulting correlations (Fig. 9) are comparable gnd preePTeTen:
iKS4S NB3IA2YE TNBY bh! ! Qa 9FNIK {eadsSYy wSasSI NDK [ | 02 NlradjetdandlygeR ardshoivir ig Big: T. It was faund-thatghe 5| 4 |/ statistically significant, suggesting that the ensemble back trajectory analyses

majority of rainfall in Gibraltar during the period 192004 was derived from the North Atlantic; the Mediterranean Sea wasdféo have contributed less frequently (Fig. 8).

In order to address this question, the numerical forward model (Fig. 6)

Are the inferred source regions of Gibraltar precipitation valid? Figure 9 Comparison of

have identified typical and recurring oceanic sources of Gibraltar precipitgtion.

model output
wals precipitationt 0 with

Conclusions
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climate information to be lost.

1 The growth of stalagmites should be modelled or characterised in as much detail as
possible if they are to be used for palaeoclimate research, supporting the need for
multi-annual monitoring of cave systems from which stalagmite samples are

Acknowledgements

Acknowledgements

(ONE North Easéind theSir Kingsley Dunham Truate gratefully acknowledged by AJB
for their financial support. ThBational Oceanic and Atmospheric Administratiosithanked
for providing access to the Hybrid Sin§larticle Lagrangian Integrated Trajectory Modb#.
Lisa M. Baldin{University of Durham) is thanked for much useful discussion.

retrieved.
1 Stalagmitet *0 may reflect a multitude of climate parameters.
1 This suggests that Gibraltar precipitatian MJ/is heavily dependent on moisture

migration trajectories and rainout behaviour, and that these processes are likely to
be reflected by Gib04a™®0.

1 Dynamic forward models can provide meaningful results in relation to evaluating
forcing mechanisms responsible for range in a stalagmit&O record.

1 Forward modelling may in the future be able to test the theoretical response of
stalagmite! *°O to climate shifts.

1 The use of multiple stalagmite'®O records has the potential to reconstruct climate
dynamicsthrough time.

Modelling the 53year *°0 record of Gib04a
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Figure 10Simple annualkgsmoothed pseudoproxy outputs for source region A to |. There fafe Year
clear differences in secular trends; e.g., F is decreasing, D is increasing, and | exhibits gn
inflection in the mid 1970s. Additionally, the variability in | is greater than those based of Figure 11 By adjusting the fraction of rainout to residual vapour within realistic bounds
North Atlantic source regions. (a), exceptional model fits may be achievé). (Actual GibO4a proxy data originally
reported by Matteyet al., 2008.

Modelling the 53yeart 80 record of Gib04a: results and implications

Based on SST, relative humidity and seawat¥ data for each of the inferred source regions, simple stalagmi@ model outputs were generated (Fig.
10). These results show clear differences in secular trends: region F is decreasing, region D is increasing, and il@tg@nlieft@ction in the mid970s.
Additionally, the variability in | is greater than those based on North Atlantic source regions. These results indisatedhaegion conditions may impart
recoverable signals in precipitation and stalagmiféO data. We are able to model the theoretical consequences of shifts in oceanic source regions and
rainout behaviour along a the migration trajectories of moisture masses. We illustrate the latter here. By adjustingthef rainout to residual vapour in
the moisture mass within realistic bounds, exceptional model fits may be achieved (Fig. 11). This suggests that Gitigitégiopre'®0 is heavily
dependent on moisture migration trajectories and rainout behaviour. We aim to find instrumental constraint on this proc#egriaying atmospheric
vapour measurements as a model inputs and by conducting a more comprehensive set of ensemble back trajectory analyses fattine. Beyond this, 3
refined forward model may be able to evaluate the relative importance of climatic processes on different timescale®mteoeiadividual stalagmite *°0
records of interest by simulating their isotopic signatures, helping to more comprehensively interpret statajfite

Future work

1 Conduct a more comprehensive set of ensemble back trajectory analyses.

1 Create a compound model that employs particular source regions when they are
WY OGABSQo

1 Build continentallyderived precipitation and moisture recycling into the forward
model.

1 Integrate karstclimate signal transfer processes.
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