Soil water and nitrate distribution under drip and furrow irrigation regimes for corn

G. Arbat1, A. Roselló2, F. Domingo-Olivé2, J. Puig-Bargués1, E. González Llinàs2, M. Duran-Ros1, J. Pujol1 and F. Ramírez de Cartagena1

1 University of Girona, Department of Chemical and Agricultural Engineering and Technology, Girona, Spain.
2 IRTA Mas Badia, Girona, Spain.
Introduction

Nowadays furrow is the irrigation system most commonly used by corn producers in Alt and Baix Empordà (Spain) and in many other production areas around the world.

In recent drought periods water for irrigation has been restricted, therefore farmers are considering to adopt more efficient irrigation systems as drip irrigation.
Introduction

The region (Alt and Baix Empordà, Spain) is included in the nitrate vulnerable zones in accordance with the water framework directives.

Due to the high density of intensive hog farming in the region it is very common to apply pig slurry as fertilizer.

In the alluvial soils of the region, the irrigation practices and fertilization strategies are the key points in order to minimize ground water pollution with nitrates.
Introduction

As drip irrigation is not a common practice in extensive crops as corn, it is needed to understand the water and nitrate dynamics in the soil under field conditions in order to prevent nitrate leaching to the aquifers.
Objectives

1.- To compare soil water distribution in furrow and drip irrigated corn.

2.- To determine soil nitrate distribution and its concentration in the leached solution in a drip irrigated corn field under different fertilization treatments.

3.- To compare grain yield and water use efficiency (WUE) in furrow and drip irrigated corn under different fertilization strategies.
Procedures

• Field experiment from 2005-2008
• Conducted at Mas Badia Experimental Station (Girona, Spain) in two different fields
• Alluvial soils, Oxyaquic Xerofluvents (SSS, USDA, 2010)
• Sandy-loam (2008) and Silty-loam (2009 and 2010) soil textures
Procedures in the 2008 experiment
Furrow irrigation

- 3 replications of 1 irrigation treatment
- Each plot was 130 m long and 4.5 m wide

- Monitored parameters:
 - Irrigation water doses,
 - Advance and recession times
 - Soil water contents at 20, 70 and 120 m from the inflow

- Corn yield was obtained at the start, 1/3, 3/5, 4/5 and at the end of the furrows
Procedures 2008 experiment

- Distance between plants = 17 cm
- Field slope = 0.0015 m/m

furrow spacing = 0.75 m
Procedures 2008 experiment

The furrows were blocked at its end to prevent runoff
Procedures 2009 experiment

- 3 treatments with 3 replications:
 - Furrow irrigation
 - Drip irrigation, 0.3 m emitter spacing (D30)
 - Drip irrigation, 0.5 m emitter spacing (D50)

- Each plot was 100 m long and 4.5 m wide
- Field slope = 0.005 m/m
- Drip-line spacing: 1.5 m
- Corn rows spaced: 0.75 m
- Emitter flow-rate: 4 L/h
- Monitored parameters: Irrigation water doses for each treatment
- Corn yield was obtained at the start, 1/2, and at the end of the rows.
Procedures 2010 experiment

• 3 replications of 1 irrigation treatment:
 • Drip irrigation, 0.5 m emitter spacing (D50)

• 20 different fertilization treatments:
 • 2 at pre-planting x 10 during the growing season
 • pre-planting treatments: 0 and 120 kg N/ha from pig slurry
 • Post planting treatments: 0 to 300 kg N/ha with fertigation
Post planting treatments in 2010 experiment

Fertigation treatments
(with liquid fertilizer 16% urea, 8% nitrate and 8% ammonium)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>13/07/2010</th>
<th>21/07/2010</th>
<th>20/07/2010</th>
<th>kg N/ha in total</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>T3</td>
<td>40</td>
<td>0</td>
<td>35</td>
<td>75</td>
</tr>
<tr>
<td>T4</td>
<td>40</td>
<td>35</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>T5</td>
<td>40</td>
<td>35</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>T6</td>
<td>75</td>
<td>75</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>T7</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>225</td>
</tr>
<tr>
<td>T8</td>
<td>150</td>
<td>75</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>T9</td>
<td>150</td>
<td>75</td>
<td>75</td>
<td>300</td>
</tr>
<tr>
<td>T10</td>
<td>150</td>
<td>150</td>
<td>0</td>
<td>300</td>
</tr>
</tbody>
</table>
Procedures 2010 experiment

From 30/07/2010 until 16/09/2010
Soil samples from T1 and T4 (0 to 75 kg N / ha) were extracted every week at 0, 37.5 and 75 cm from the drip-line, at depths of 15, 45, 75 and 105 cm
Soil water content was gravimetrically determined for each position.

Moreover, soil water content was measured with a TDR in the same position from 0 to 150 cm depth (every 15 cm).

On treatment T4 (75 kg N/ha), with and without preplanting fertilization with pig slurry, nitrates were analysed in the same soil samples.

Soil solution was collected every week with suction cups installed at 1.0 m depth in treatments T1 (0 kg N/ha), T4 (75 kg N/ha) and T9 (300 kg N/ha) that received pig slurry.
On 2008, precipitation + irrigation was 94 mm below ETc
In furrow irrigation, precipitation + irrigation was 78 mm greater than ETc.
In D30 Drip irrigation, precipitation + irrigation was 151 mm lower than ETc.
In D50 Drip irrigation, precipitation + irrigation was 160 mm lower than ETc.
2010 irrigation campaign

On 2010

Drip irrigation, precipitation + irrigation was 30 mm slightly greater than ETc
Soil water modeling

Based on Richards equation, soil water distribution was simulated using HYDRUS (Simunek et al., 2006) code.

Soil hydraulic properties were taken into account using soil van Genuchten-Mualem model.

Simulations:

- Furrow irrigation: event carried out on August 14, 2008 and redistribution till 8 days later.

- Drip irrigation: period from July 30, 2010 till September, 16/2010
Soil water modeling

Furrow irrigation: Flux domain and boundary conditions

200 cm

15 cm

75 cm

Pressure head during the irrigation events

Variable flow condition to take into account precipitation and evaporation

No Flow

Unitary hydraulic head
Soil water modeling

Drip irrigation: Flux domain and boundary conditions

- Constant flow during the irrigation events
- Variable flow condition to take into account precipitation and evaporation
- No Flow
- Unitary hydraulic head

Dimensions:
- 75 cm
- 150 cm
Water Use (WU), Water Use Efficiency (WUE) and Water Deficit (Def)

Water use (WU):

\[WU = \text{Irrigation} + \text{Precipitation} \]

Water use efficiency (WUE):

\[WUE = \frac{\text{Corn Yield}}{WU} \]

Water deficit (Def):

\[\text{Def} = \text{ETc} - WU \]
GLM procedure of the SAS statistical package was used.

In Treatment T4 (75 kg N/ha), the model analyzed, soil water distribution, soil nitrate content. The model included as fixed effects:
- Application or not of organic fertilizer at pre-planting,
- Depth
- Horizontal distance to the emitter
- Date
- and their interactions.

LSD’s pairwise comparison was used to identify means that were different at p<0.05.
Statistical Analyses

GLM procedure of the SAS statistical package was used in treatments T1 (0 kg N/ha), T4 (75 kg N/ha) and T9 (300 kg N/ha) that received pig slurry the model analyzed nitrate concentration in the leached in 2010. The model included as fixed effects:
- Amount of applied N during the growing season
- Depth
- Horizontal distance to the emitter
- Date
- and their interactions.
LSD’s pairwise comparison was used to identify means that were different at p<0.05.
GLM procedure of the SAS statistical package was used.

The model analyzed *drained water* in 2010.

The model included as fixed effects:

- Position: - emitter
 - plant
 - mid distance between two drip-lines (no emitter)
- Date

LSD’s pair-wise comparison was used to identify means that were different at $p<0.05$.

RESULTS AND DISCUSSION

Soil water distribution under furrow irrigation 1 day after irrigation (2008)

- The ridge remains quite dry even at the end of the irrigation.

- Soil water contents below 20 cm depth were almost unchanged after irrigation.

- This point was confirmed with the TDR measurements and the results of the HYDRUS model.
RESULTS AND DISCUSSION

SOIL WATER CONTENTS UNDER DRIP IRRIGATION
2010 EXPERIMENT

The soil water content throughout the irrigation campaign depended significantly ($p < 0.05$) on the soil depth and the horizontal distance from the drip-line, but did not depend on the application of the manure.

The soil water content decreased when the horizontal distance to the lateral and soil depth increased.

At 1.05 m depth, soil water contents remain practically unchanged independently of the distance to the drip line.
Soil water distribution simulated with **HYDRUS** and measured from soil samples

The model accurately predicted the water content

The wetting front reached the region where the plant grown (37.5 cm from the drip line).

Similar wetting patterns were observed along the irrigation season.

Good agreement between soil water contents determined gravimetrically and simulated with HYDRUS.
RESULTS AND DISCUSSION

Soil Nitrate Distribution under drip irrigation 2010 experiment

• Soil Depth
 During most of the period soil nitrate content at 15 cm depth was significantly greater \((p>0.05)\) than other soil depths.

Except for one particular date (September 16, 2010) there were no significant differences \((p>0.05)\) among the treatments that received or did not pig slurry.
RESULTS AND DISCUSSION

Nitrate Distribution at different distances from the drip-line

During most of the period soil nitrate content at 37.5 and 75 cm from the drip-line were greater (p>0.05)

This suggest that nitrate move away from the drip line up to the periphery of the wetted region
Nitrate content was greater at the soil surface than at deeper soil depths.

Nitrate content was greater and at 37.5 and 75 cm from the drip line than at the position of the drip line.
Nitrate concentration in the leached solution

On treatment T9 (300 kg N/ha) there were significant differences among the different dates, being **higher at the end of the crop cycle**.

On Treatment T1 (0 kg N/ha) and T4 (75 kg N/ha) there were no significant differences among the dates.

The average nitrate concentration (ppm) during all the period in the leached solution for the different treatments was:

<table>
<thead>
<tr>
<th></th>
<th>T-1 (0 kg N/ha)</th>
<th>T-4 (75 kg N/ha)</th>
<th>T-9 (300 kg N/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>42.6^B</td>
<td>35.0^B</td>
<td>104.9^A</td>
</tr>
</tbody>
</table>

Different upper-case letters means significant differences among treatments at p<0.05.
Nitrate concentration in the leached solution

The greater differences were on September 29, just after to harvest the corn.

There were no significant differences between T1 (0 kg N/ha) and T4 (75 kg N/ha)

From September 29, nitrate concentration tends to reduce in all the treatments due to the irrigation events.

Different upper-case letters means significant differences (p<0.05) among different dates.

For each date, different lower-case letters means significant differences (p<0.05) among treatments.
Weekly drained water (l/m²) at 90 and 150 cm depth for the different positions (emitter, plant and no emitter) calculated from the TDR readings.

By each date, different letters means significant differences among positions at p<0.05.
Significant (p<0.05) greater corn yield at the end of the furrow due to the greater infiltrated water depth in those positions.

This shows the effect of the low uniformity in the water distribution, especially when the irrigation water dose was below the irrigation needs.
Corn Yield – 2009 experiment

<table>
<thead>
<tr>
<th></th>
<th>Drip irrigation D30</th>
<th>Drip irrigation D50</th>
<th>Furrow irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Use (Irrig + Precip.) (mm)</td>
<td>316.0</td>
<td>307.9</td>
<td>545.6</td>
</tr>
<tr>
<td>Yield (Mg/ha)</td>
<td>13.70</td>
<td>12.92</td>
<td>13.99</td>
</tr>
<tr>
<td>WUE (kg/m³)</td>
<td>4.335</td>
<td>4.196</td>
<td>2.564</td>
</tr>
</tbody>
</table>

The drip irrigated treatments received a lower water dose but the yield was not affected, consequently: **WUE was noticeable higher when using drip irrigation**
There were significant differences on the mean corn yield among the treatments that received pig slurry as preplanting fertilizer and the treatments that did not receive it.

<table>
<thead>
<tr>
<th>Mean corn yield (Mg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With application of pig slurry</td>
</tr>
<tr>
<td>Without application of pig slurry</td>
</tr>
</tbody>
</table>

CORN YIELD was significantly higher for the treatments that received pig slurry.
There were no significant differences on corn yield among the different fertigation treatments receiving from 0 to 300 kg N/ha.

The treatments that did not received slurry and received a lower application dose of N (0 to 75 kg N/ha) during the growing period were the ones that produced less (T1 to T4)
CONCLUSIONS

- Furrow irrigation on a sandy-loam soil did not allow to moisten the ridge, were the corn plants grew, which reduced potential corn yield.

- Drip irrigation on a daily basis allows to maintain a soil wetted region large enough for the corn development.

- Although differing values of WUE were observed among years, comparisons in the same year show that WUE was higher for drip irrigation.

- The soil nitrate distribution throughout the irrigation campaign indicates that nitrate moves with the water from the emitters, accumulating at the periphery of the soil wetted pattern.
CONCLUSIONS

• In drip irrigation the application of pig slurry at pre-planting maintained corn yield with minimal or even none application of nitrogenous fertilizer during the growing season.

• The application of a high amount of nitrogen fertilizer during the growing season (300 kg N / ha) increased the concentration of nitrate in the leachate solution without increasing corn yield.