Advancing a Services Oriented Architecture for Sharing Hydrologic Data

Jeffery S. Horsburgh
Utah Water Research Laboratory
Utah State University

D.G. Tarboton, D.R. Maidment, I. Zaslavsky,
D.P. Ames, J.L. Goodall, and R.P. Hooper
Consortium of Universities for the Advancement of Hydrologic Science, Inc.

An organization representing more than one hundred United States universities, receives support from the National Science Foundation to develop infrastructure and services for the advancement of hydrologic science and education in the U.S.

- Hydrologic Information System
- Hydrologic Measurement Facility
- Hydrologic Modeling
- Hydrologic Education Outreach

http://www.cuahsi.org/
What is the CUAHSI HIS?

UT-Austin, SDSC/UCSD, Utah State U, Idaho State U, Drexel U, U of So. Carolina, CUAHSI
PI: D. R. Maidment (UT-Austin)

• An online distributed system to support the sharing of hydrologic data from multiple repositories and databases via standard water data service protocols
• Software for data publication, discovery, access and integration

Partners:
Academic: 11 NSF hydrologic observatories, CEO:P projects, LTER, CZO...
Government: USGS, EPA, NCDC, NWS, state and local
Commercial: Microsoft, ESRI, Kisters
International: Australia, UK
Standardization: OGC, WMO (Hydrology Domain WG); adopted by USGS, NCDC, Army Corps of Eng.
HydroServer

- Publication of point observations and geospatial datasets
- Distributed data with local control for data publishers
Ongoing Data Collection

Point Observations Data

Historical Data Files

GIS Data

Internet Applications

Data presentation, visualization, and analysis through Internet enabled applications

HydroServer

ODM Database

WaterML

WaterOneFlow Web Service

GetSites

GetSiteInfo

GetVariableInfo

GetValues

OGC

WMS, WFS, WCS
• A **data source** operates an observation network
• A **network** is a set of observation sites
• A **site** is a point location where one or more variables are measured
• A **variable** is a property describing the flow or quality of water
• A **value** is an observation of a variable at a particular time
• A **qualifier** is a symbol that provides additional information about the value

CUAHSI Observations-Network Information Model

NWIS Daily Values

Data Service

Network

NWIS Sites

San Marcos River at Luling, TX

Discharge, stage

(Daily or instantaneous)

Sites

Variables

Observation

{Value, Time, Qualifier}

18,700 cfs, 3 July 2002
Observations Data Model (ODM)

- A relational database at the single observation level
- Metadata for unambiguous interpretation
- Traceable heritage from raw measurements to usable information
- Promote syntactic and semantic consistency
- Cross dimension retrieval and analysis

WaterML and WaterOneFlow

WaterML is an XML language for communicating water data. WaterOneFlow is a set of web services based on WaterML.

- **Set of query functions**
 - GetSiteInfo
 - Given a site number, this method returns the site's metadata. Send the site code in the siteID parameter.
 - GetSiteInfoObject
 - Given a site number, this method returns the site's metadata. Send the site code in the siteID parameter.
 - GetSites
 - Given an array of site numbers, this method returns the site metadata for each one. The result array will return all sites, up to a limit of 50,000.
 - GetSitesXml
 - Given an array of site numbers, this method returns the site metadata for each one. The result array will return all sites, up to a limit of 50,000.
 - GetValues
 - Given a site number, a variable, a start date, and an end date, this method returns a time series of values. 'NetworkName:Variable'. Sending a null BeginDate and EndDate will return all values.
 - GetValuesObject
 - Given a site number, a variable, a start date, and an end date, this method returns a time series of values. 'NetworkName:Variable'. Sending a null BeginDate and EndDate will return all values.
 - GetVariableInfo
 - Given a variable code, this method returns the variable's name. Pass in the variable code to get a list of all variables.
 - GetVariableInfoObject
 - Given a variable code, this method returns the variable's siteName. Pass in the variable code to get the siteName.

- **Returns data in WaterML**

```xml
<timeSeries>
  <sourceInfo xsi:type="SiteInfoType">
    <siteName>Colorado Rv at Austin, TX</siteName>
    <siteCode network="NWIS" siteID="4619631">08158000</siteCode>
  </sourceInfo>
  <geoLocation>
    <geogLocation xsi:type="LatLonPointType" srs="EPSG">
      <latitude>30.24465429</latitude>
      <longitude>97.694448</longitude>
    </geogLocation>
  </geoLocation>
</timeSeries>
```

```xml
<variable>
  <variableCode vocabulary="NWIS" default="true" variableCode="Discharge">cubic feet per second</variableCode>
  <units unitsAbbreviation="cfs" unitsCode="35">cubic feet per second</units>
</variable>
```

```xml
<values count="2545">
  <value dateTime="2006-12-31T00:00:00">129</value>
  <value dateTime="2006-12-31T00:15:00">129</value>
  <value dateTime="2006-12-31T00:30:00">129</value>
  <value dateTime="2006-12-31T00:45:00">129</value>
  <value dateTime="2006-12-31T01:00:00">124</value>
  <value dateTime="2006-12-31T01:15:00">124</value>
  <value dateTime="2006-12-31T01:30:00">124</value>
  <value dateTime="2006-12-31T01:45:00">124</value>
  <value dateTime="2006-12-31T02:00:00">124</value>
</values>
```
HIS Central - HydroCatalog

- Central metadata catalog supporting data discovery
HIS Central HydroCatalog Content (November 2010)

- 65 public web services
- 18,000+ variables
- 1.96+ million sites
- 23.3 million observation time series
- Referencing 5.2 billion data values

Available via HIS Central
discovery services

Available via GetValues requests

Metadata for most services are harvested weekly
HydroCatalog Search Services

• A web service application programmers interface to the metadata catalog
• Semantic annotations and a domain ontology aid in discovery
HydroDesktop

- Discover, download, visualize, and analyze hydrologic data
HydroDesktop Capabilities

GIS
• Add shapefiles to map
• Change symbology and labels
• Print and export map
• GIS toolbox

Hydrology
• Search for data
• Download data
• Display time series
• Export data

Extensibility
• A plug-in interface for analytical capabilities
Data Visualization and Analysis in R
Collaborative Open Source Development

- Source Code
- Downloads
- Discussion Forums
- Issue Tracker
Toward a Standard SOA for Water Data

• CUAHSI has engaged with the Open Geospatial Consortium (OGC) to develop standards for water data

• The OGC is a non-profit, international voluntary consensus standards organization that is leading the development of standards for geospatial and location based services

 – The OGC facilitates a consensus process in which government, private industry, NGOs, and academia collaborate to create open and extensible software application programming interfaces for geospatial and other mainstream information technologies
WaterML 2.0
An OGC Standard for Transmitting Hydrologic Observations

• An application schema of GML 3.2.1
• Makes extensive use of the Observations and Measurements (O&M) specification (ISO 19156)
• Describes:
 a) observations (what/when/where/how/results/context)
 b) time series (values/units/data types/data quality/accuracy/period of record/publisher and owner)
 c) observation processes (sensors/algorithms/models/manual methods)
 d) locations (stations and locations/operators/datums/types of observations/history/time zone/resources)
 e) grouping of measuring locations (i.e. networks)
 f) groupings of observations and time series
• OGC Hydrology Domain working group
 – Working on WaterML
 – Interoperability experiments
A Standard SOA for Water Data
OGC Concept Development Study

• Operationalizing the CUAHSI HIS
• Encourage broad implementation by software providers and broad uptake by data publishers
• Determine optimal web service interfaces and data encodings
Summary

• CUAHSI HIS
 – Cyberinfrastructure for managing and publishing observational data
 – Overcomes syntactic and semantic heterogeneity using a standard data model, transmission language, controlled vocabularies, and ontology
 – End-to-end infrastructure - from publication to discovery, access, and analysis
 – Supports a national network of academic partners, and links to many important federal water data repositories
 – Maintains national registry of services with searchable metadata
 – Already deployed at multiple locations, leveraged by other projects, free and open source

• New Developments
 – HydroDesktop and associated plugins for data discovery, download, and analysis
 – WaterML 2.0 is an emerging OGC standard language for communicating water observations data from academic and government sources
 – New OGC Concept Development Study to define best practices for web service interfaces and data encodings
Thank you!