Assessing the impact of land management changes on nutrient loads with the Reliability Ensemble Averaging (REA) method

J-F Exbrayat1, NR Viney2, H-G Frede1 and L Breuer1

1Justus-Liebig-University Giessen, Germany; 2CSIRO Land and Water, Canberra, ACT, Australia

1. Scenario analysis in hydro-biogeochemical modelling

Classical approach:
- Calibration and prediction by a single model
- Alteration of relevant boundary conditions
- Re-run and study of difference between original and new prediction

But...
… how reliable is an extensively calibrated model under changed boundary conditions?
… would a multi-model ensemble predict the same changes?

2. Ensemble modelling
- Pools different predictions of the same system
- Aims at balancing strengths and weaknesses between members
- Widely used in climate sciences
- Averaging methods usually provide more reliable predictions than single models
- State-of-the-art method to circumnavigate structural uncertainty issues

3. Ellen Brook River
- Located in south-west Western Australia
- Mediterranean climate with cool and wet winters, dry and hot summers
- Contributes 6% and 10% to total annual stream flow and N loads entering the Swan Canning estuary
- High frequency N monitoring
- Inorganic N represents about 10% of TN

Due to frequent algal disturbances, the Swan River Trust [1] set a reduction of N loads by 50% over next years.

3. REA method

Philosophy [2]:
- Model reliability under current conditions
- Convergence with other ensemble members
- Model weights in the averaging scheme

Put in a mathematical way, each model i of the ensemble is assigned a weight w computed such as

$$w_i = \left(R_{i,m} \cdot C_i \right)^{1/(m+n)}$$

where R_i and C_i are the reliability and convergence criteria of model i, respectively. Coefficients m and n are used to give more importance to either the reliability or the convergence criterion.

4. Ensemble setup
- Four model structures: LASCAM, CHIMP, SWAT and HBV-N-D
- Calibration to simulate daily runoff and TN fluxes between 01/01/1989 and 31/12/1997
- Scenarios of reduction in N fertiliser application set between 01/01/1998 and 31/12/2006
- REA using the inverse of the RMSE during calibration as reliability criterion and the inverse of the absolute difference between model as convergence criterion.

5. Calibration results

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE [g N / (ha d)]</th>
<th>TN export [t N / yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calibration Validation</td>
<td>Calibration Validation</td>
</tr>
<tr>
<td>LASCAM</td>
<td>5.4 7.1</td>
<td>83.0 59.7</td>
</tr>
<tr>
<td>CHIMP</td>
<td>10.8 9.9</td>
<td>84.9 69.0</td>
</tr>
<tr>
<td>SWAT</td>
<td>18.4 26.2</td>
<td>131.1 117.7</td>
</tr>
<tr>
<td>HBV-N-D</td>
<td>14.3 10.4</td>
<td>34.3 31.3</td>
</tr>
</tbody>
</table>

6. Scenario results and discussion

Results of the different scenarios for the different models and some averaging techniques are summarised in Figure 3.

![Figure 3 Scenario results for single models and ensembles](image)

Although they predict very different absolute TN fluxes predictions, all models except CHIMP have a similar absolute response to the same scenario. If we only use a simple average or a weighted mean based on calibration results ($n=0$), the outlying position and calibration performances of CHIMP ($2nd$ best) pull the ensemble towards higher response to fertilisation rate reduction. By integrating the convergence criterion ($n=1$), the REA provides a more reliable scenario result without totally disqualifying any of the models.

This method has a great potential in the hydro-biogeochemical modelling context.

Acknowledgements

The Australian Bureau of Meteorology provided the climatic data used for model application, the Western Australian Department of Water provided runoff and chemical data used for model quality assessment. This project was generously funded by the Deutsche Forschungsgemeinschaft (DFG), BR2238/5-1.

References