This poster participates in OSP

Outstanding Student Poster Contest

EGU2011-10467

Assessment of geomorphic risks and attractiveness for recreational purposes

Iuliia Blinova and Andrey Bredikhin Department of Geomorphology and Paleogeography, Faculty of Geography, Moscow State Lomonosov University, Russian Federation

1.INTRODUCTION

In a progressively developing scope of tourism the interconnection of relief, as the basis of landscape, and recreation has become a topical question. It allows more efficient use of natural resources, as well as ensures the safety of recreation. Approach to identify and evaluate recreation and geomorphologic potential is based on the notion of "fields of attractiveness and risk" Comprehensive study and assessment of each qualitative field gives a value of relief influence on a person. This quantity which indicates a complex functional suitability of an area for recreational purposes should be called "recreational and geomorphologic potential".

The assessment of geomorphic risk and attractiveness is particularly important for the areas with high contemporary geodynamics (South Iceland, Sicily, Kamchatka peninsula). In such territories along with high recreational attractiveness we should take into account enormous risks induced by active relief dynamics.

2. THE ASSESSMENT METHOD

In recreational system relief could be considered from two different viewpoints. On the one hand it is one of the main elements of natural and information resources which are aimed at satisfying recreational requirements of people. On the other hand relief is an external element which makes the system functioning.

Interrelations between subjects/objects of recreational activity and the environment are considered from a position of system theory. This methodological point of view allows clearly retrace interconnections and mutual influence of different components on each other.

Figure 2. The structure of recreational and geomorphic system (Modified from Bredikhin, 2010).

In this context a new branch called recreational geomorphology was emerged in geosciences. The subject of investigation is relief characterized by specific properties and relations within the recreational and geomorphologic system.

4. REFERENCES

- Bredikhin A.V. 2010 Recreational and geomorphic systems, Moscow-Smolensk (In Russian)
- Reynard, E., Coratza, P. and Regolini-Bissig, G., 2009 Geomorphosites. Verlag Friedrich Pfeil, München, Germany

Recreational and geomorphic system is a particular kind of systems. In it the entire recreational system and its components (subjects - tourists, maintenance stuff, objects – technical systems, constructions) enter into different relations with relief. These interrelations are based on relief features expressed in geomorphic composition and location through a functions set (such as aesthetic, educational etc.).

(ljuljawa@mail.ru)

Figure 1. Position of relief with respect to recreational system (Modified from Bredikhin, 2010).

There are two general domains of relief and recreation mutual influence: recreational and geomorphic (RG) risks and RG attractiveness. Risk is a measure of the probability and severity of an adverse effect to life, health, property, or the environment. The interaction between geomorphological basis and recreational activity could be represented as a special field of risk. The tension of this field could be measured by value of risk which corresponds to consequences weight. Attractiveness of relief should be determined by a complex parameter, composed of particular relief properties (uniqueness, diversity, aesthetic appeal).

Field of attractiveness and field of risk together form some kind of coordinate system. The value of relief capacity for having positive influence on a person (physical, psychological etc.) can be placed in it.

		Table	e 1.An ex	ample of	attractiver	ess calculations	Estimation of attractiveness and				
Relief features						Attractiveness	risk value must be carried out				
		Altitude				1	means of composite indexes which include particular rates of relief				
	-	Vertical ruggedness				2					
Morphom	netric -	Horizontal ruggedness				0	features (rareness, diversity				
	-	Gradient of slope			be	2	aesthetical attractiveness etc.). The quantity which indicates a				
	-	Slope exposure			e	0					
Intensity of coastal events						1	complex functional suitability of an				
		•	ze distrib			3	area for recreational purpose				
	Karstic					0	should be called "recreational ar				
	-	Atmogenic				3					
	-	Biogenic Caused by erosion				0	geomorphic potential" (RGP).				
	-					3					
Geomorph	-	Reservoirs (various genesis)				2					
of various g	_				· · · ·	3	Table 2.An example of risk calculations				
Ĺ	_	Presence of several altitude levels				0	Danger (threat) – a natural phenomenon that could F lead to damage (various genesis)				
	-	Ribs				0	Earthquakes 0				
	-					0	Volcanic eruptions 1				
	-	Presence of islands and peninsulas				0	Landslides 3				
				Glacial		0	Mud flows 3				
P	Presence	of cor	ntemporar	y glaciatic	n	0	Avalanche 1				
		A	verage			2,22	Abrasion 0				
							_ Thermoabrasion (
							Coastal dinamycs 1 Piping 0				
							Piping Erosion				
Table 3. RGP dependence on risk-attra				ndence of	n risk-attra	ctiveness ratio	Thermokarst				
	High		1	1	4	Types of RGP:	Thermokarst0Soil heaving0				
— Risks	Mediu		2	3	3	1. Insufficient	Solifluction 2				
<u> </u>	Low		2	3	3	2. Medium	Averange 1,7				

	High	1	1	4	Types of RGF	
Risks	Medium	2	3	3		
-	Low	2	3	3	2. Medium 3. Optimum	
	_	Low	Medium	High	$_{-}$ 4. Extreme	
			Attractiveness	8		

• Preobrazhensky V.S., Zorin I.V., Vedenin Yu.A. 1972 Geographical aspects of construction new types of recreational system. Izvestia Akademii Nauk USSR. Set. Geogr., No1, p. 125-131 (In Russian)

Figure 3. Fields of relations

between relief and elements of

recreational system (Modified

from Bredikhin, 2010).

3. CASE STUDIES

This approach was applied for three sample areas: Northern-West Sicily (Italy), Southern-East Iceland and Eastern coast of Kamchatka peninsula (Russia). The choice of sample areas was not random. All of them correspond to significant examples of modern recreational systems in areas with high contemporary geodynamics. Therefore it was particularly interesting to compare the structures of RGP for such different and specific areas.

Table 5. RGP for different types of recreation activities (Skaftafell National Park, Iceland)

		-				
	Туре	es of recreation	Attractiveness	Risk	Poter	
	Hillwalking		2,83	1,71	Optin	
	Cul	tural education	1	1,71	Med	
	Environmental education		2,86	1,71	Optin	
	Croorto	Trekking	1,67	1,71	Mad	
Sports	Sports -	Fishing	1,5	1,71	Med	

3.3 Kamchatka peninsula

The most significant part of work was done for the third sample area. It is situated in the Far Eastern Russia on Kamchatka peninsula within Nalychevo Nature Park.

c) geomorphic scheme of central part of Nalychevo, d) scheme of recreational structure of Nalychevo.

3.1 Trapani area

Figure 4 Recreational and geomorphic system of RGS Trapani: a) geomorphic scheme of Sicily, b) scheme of recreational structure of RGS

Table 4 RGP for different types of recreation activities (Tranani area NIM Sicily Italy)

	activities (Trapani area, NVV Sicily, Ita					
	Types of recreation		Attractiveness	Risk	Potential	
ic processes, and little	Ва	thing	2,2	1,86	Optimum	
	Cultural education		1,67	1,86	Medium	
non-wave factors: wave factors:	Environmental education		2,75	1,86	Optimum	
th marshes and lagoons	Charta	Trekking	1,8	1,86	Madium	
a ulative eas,	Sports	Fishing	2	1,86	Medium	
ains/hills eas, limited by benches	Hillwalking		2,33	1,86	Optimum	

3.2 Skaftafell National Park

Figure 5 Recreational and geomorphic system of Skaftafell National Park: a) geomorphic scheme of Iceland b) scheme of recreational structure o National Park.

Zones of RGS Near field Far field View points Main routs Rivers

LEGEND

centre

Table 6. RGP for different types of recreation a	activities
(RGS Nalychevo, Kamchatka peninsula,	Russia)

Туре	s of recreation	Attractiveness	Risk	Potential		
	Balneal	2,29	1,78	Optimum		
Hillwalking		2,00	1,78	Medium		
	Skiing	2,25	1,78	Optimum		
Sports	Trekking	2,36	1,78	Optimum		
•	Fishing	2,33	1,78	Optimum		
•	Rafting	1,75	1,78	Medium		
Environmental education		2,50	1,78	Optimum		
Legend						

			Jona			
	Ge	(2				
	Volcanic					
	Polygenetic denuc (fluvioglacial, debr					
	Genesis		mo	unt	tains	
	Genesis	low (500-1000m)		medium (1-2 km		
	Volcanic					
	Glaciovolcanic					
	Volcano-denudatio	nal				
	Stream valleys River valleys		nic and postvolcanic nic constructions:) Conical mounts	relief		RG cer main second
-	Riverbed	·	Shield volcano			Neal II
-	Barranco	Extrusive volcano			Far fiel	
-	Fluvioglacial hollows	: Lava plateau			Therm	

Thermal fields Thermal springs Footpaths

(cc)

Geysers Decompression chamber Thermal springs

Craters:

😑 summit

flank

III slag

polycentric

Ashes fields

Thermal fields

nterfluve surfac

😽 Flat-topped

Peaked

🤊 🖕 glacial

Round-topped

polygenetic

reas of kar destributi

776 polygenetic

Glaciers

🐓 (gravity, erosion)

Debris cones and trai