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GRAIN-SIZE MAPPING OF RIVER BED

Grain size, a key information in:

Hydro-ecology (Wood et al., 2007)

Fluvial hydraulics (Sneldner et al., 2011)

Flow rugosity

Solide transport

Useful variable:  

Median diameter ∅50

Spatial information (Clarck et al., 2011)
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GRAIN-SIZE MAPPING FROM FIELD SURVEY

Usual protocol:

Several zones

Random location of 1 pebble

Chose n<10 nearest pebbles 

Median statistic from neighbor

 time consuming

 uncertainty

=> Remote sensing 
from images
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Other protocols, such as 
«paint & pick» (Rollet, 2007)
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ALTERNATIVE: GRAIN-SIZE MAPPING
FROM IMAGES

Proxy-detection:

Rubin, 2004

Rollet et al., 2002

Airborne detection:

Carbonneau et al., 2005 

Rollet et al., 2002
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Feurer, 2008

may be specified such as only allowing for positive grain-sizes.
Importantly, the technique converts a solution array x indexed atm, to
a solution of proportions indexed at s which sums to unity whilst
conserving probability mass, i.e. a grain-size distribution. It therefore
makes interpolated solution x amenable to measures of the extent to
which the solutionminimises the residual between a and C, which is a
measure of the numerical ‘fit’ in the solution of the least-squares
problem. As such, it can be a criterion upon which the grain-size
distribution from an image can be accepted or rejected.

The distribution estimated by the kernel density method may be
seen in Fig. 3 (dashed line) with reference to the sieved sample (solid
line). The shapes closely agree, as do the percentiles in the cumulative
distribution. Accordingly, the derived parameters from the distribu-
tion estimated by the kernel method are in better agreement with
those derived from the sieved distribution. On this occasion, the
kernel method performs better for size, sorting and kurtosis (but not
for skewness, because it underestimates the coarse tail). Note that this
sample was chosen at random: some fits are considerably better than
this, and others marginally worse.

3. Validation

Fifty sediment samples were collected from a gravel beach, and
subsequently dried; imaged (according to the method outlined in
Buscombe and Masselink (in press)), modified from the method
proposed by Rubin et al. (2006)); and sieved at 1/4Φ between 32 mm
and1.4mm.Calibration catalogueswere compiled for theautocorrelation
technique with images of sieved sediment in the corresponding sizes.
Graphical size, sorting, skewness and kurtosis were computed from the
sieved distributions (Folk and Ward, 1957). Images were analysed using
the kernel approach outlined above to obtain a grain-size distribution,
using bandwidths given by [3]. An image will be processed in≤1 min on
a ≥1 GHz processor, so batch processing images is very quick.

Barnard et al. (2007) compared their automated results with grain-
size based onvisual point counts of grains in the same image, andusing
this approach, demonstrated that much of the discrepancy between
meangrain-sizemeasured fromsievingof samples and calculated from
surface images is due to differences between size of surface and sub-

surface grains rather than due to errors in the grain-size algorithm,
because surface grains are only a subset of a larger population that is
obtained in a sample manually obtained. This approach has also been
adopted here. The major axes of grains in each image were measured
manually using Matlab ® software (see Fig. 4 for chords manually
drawn across the major axes of grains). The field of view (FOV) of the
image, in mm/m, may be found using (Gonzalez and Woods, 2002):

FOV ¼ 17:15 2arctan
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2f
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where c and f are the CCD (imaging device) size and focal length,
respectively, in millimetres. Scaling by the pixel dimensions of the
image in the vertical and horizontal directions allows for the calcu-
lation of resolution in pixels per millimetre, thus calculation of the
lengths of features within the image are possible.

Each derived parameter from image and sieving methods were
analysed for statistical similarity. Tables 1 and 2 list correlation
coefficients (r) for each parameter set, as well as F-ratio and a T-test

Fig. 3. A Comparison of GSDs and cumulative GSDs obtained from sieving (solid line), and imaging the same sample (Fig. 1). Frequencies are normalised to sum to unity. Dashed lines
indicate the distribution obtained using a kernel density estimation approach on the linear least squares solution vector. Solid horizontal lines indicate commonly used percentiles
(10, 25, 50, 75 and 90).

Fig. 4.Major andminor axes were estimated visually from images of sediment to build a
histogram of sizes. An example ofmajor axis chords on an image of grains is shown here.

4 D. Buscombe / Sedimentary Geology 210 (2008) 1–10

Manual measurements on 
images or image processing

Buscombes, 2008
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IMAGE PROCESSING METHODS

Segmentation
Rollet et al., 2002; Graham et al., 2005 

Textural indices
Autocorrelation 
Rubin, 2004; Carbonneau et al., 2005

Fourier spectrum 
Buscombes et al., 2010

Rubin, 2004

Ducroix, 2008
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VALIDATION ISSUE

Which method is the most efficient/accurate ?

Sensitivity with respect to parameters such as: 
external conditions (brightness, solar incidence...)

presence of water (water depth, turbidity, flow velocity...)

Difficulties with ground truth measurements: 
Time consuming => costly

Low accuracy

Scene variability

=> Use of computer generated images
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OBJECTIVE

Actual image Generated image

Overwater

Underwater
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Method performance assessment from computer generated images database
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COMPUTER GENERATED IMAGES

Use of  the ray-tracing software POV-Ray
(Persistence of Vision Pty. Ltd., 2004) 

Pebbles routine developed by J. Hunt 

Controlled «image acquisition»:
solar incidence, camera position...

Controlled pebble population:
defined diameter distribution

random position

random aspect using predefined patterns, colors 
and shapes
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«Pebbles» by J. Hunt
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IMAGE GENERATION FROM OBSERVED 
GRAIN SIZE DISTRIBUTIONS

Assume gaussian distribution N(µ, ) of pebbles diameter ∅ 
in each image with µ in [2,20]cm

Empirical relationship between µ,  from observed values: 

!"#$%&'#!"(")

&'
#!

"(
")
%*
(&
+%&
",
'#
('-
$

. / 0. 0/ 1.

.
/

0.
0/

1.

23*"),"&%4#56"*

9



Bailly & Delenne, Image simulation for sediment sizing EGU 2011, Wien 

!"#$%&'#!"(")

&'
#!

"(
")
%*
(&
+%&
",
'#
('-
$

. / 0. 0/ 1.

.
/

0.
0/

1.

23*"),"&%4#56"*

!-&"5
7/%8%!-&"5%9-$:'&"$9"
7/%8%;)"&'9('-$%9-$:'&"$9"

IMAGE GENERATION FROM OBSERVED 
GRAIN SIZE DISTRIBUTIONS

Assume gaussian distribution N(µ, ) of pebbles diameter ∅ 
in each image with µ in [2,20]cm

Empirical relationship between µ,  from observed values: 

9



Bailly & Delenne, Image simulation for sediment sizing EGU 2011, Wien 

!"#$%&'#!"(")

&'
#!

"(
")
%*
(&
+%&
",
'#
('-
$

. / 0. 0/ 1.

.
/

0.
0/

1.

23*"),"&%4#56"*

!-&"5
7/%8%!-&"5%9-$:'&"$9"
7/%8%;)"&'9('-$%9-$:'&"$9"

<"$")#("&%;#)#!"(")*

IMAGE GENERATION FROM OBSERVED 
GRAIN SIZE DISTRIBUTIONS

Assume gaussian distribution N(µ, ) of pebbles diameter ∅ 
in each image with µ in [2,20]cm

Empirical relationship between µ,  from observed values: 
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Experimental design in µ,  
domains 

using stratified Monte-Carlo 

with random repetitions
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COMPUTER GENERATED IMAGES DATABASE

1500 images with ∅ constant in [2,20] cm

7500 images with ∅ in N(µ,) 
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σ depending on 
µ ∈ U [2, 20]cm

µ



Bailly & Delenne, Image simulation for sediment sizing EGU 2011, Wien 

METHODOLOGY:  AUTOCORRELATION

nugget
range

sill
Image variogram

Automatic adjustment of 
an exponential model

11

using R 
software

distance
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METHODOLOGY:  AUTOCORRELATION

nugget
range

sill

Variogram range correlated to median diameter

Image variogram

Automatic adjustment of 
an exponential model
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FIRST RESULTS 
USING AUTOCORRELATION METHOD

good linear relationship range/∅50

(R2=0.8)

unbiased estimates of ∅50 
(except small ∅50)

but heteroscedasticity: 
relative estimation error: 14% of ∅50

 Distance effect

 Model adjustment ...

7500 images with ∅ in N(µ,)

12

1500 images with ∅ constant in (2,20)cm

∅50 (cm)
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R2 = 0.69

relative estimation error: 19% of ∅50

 5pt coming from diameter 
variability inside image

1500 images with ∅ constant in (2,20)cm

∅50 (cm)
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CONCLUSION

Computer generated images enable method validation

Case of autocorrelation method: 
robust but not really accurate

Useful to discriminate grain size classes (relevant in most applications)

Can accelerate data collecting using proxy detection

Some perspectives
Assess the precision of other approaches 

 ongoing works on Fourier analysis

Generate other image series with controlled conditions:
 underwater, sun incidence, image resolution, other distributions...

 assess parameters influence on results
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FOURIER ANALYSIS

Link between amplitude of Fourier transform and diameter 
distribution
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