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General Rupture Modes

(see also EGU2011-11910 for details)

- In elastic and plastic media ruptures approach distinct stable, assumedly self-similar rupture regimes bordered by highly sensitive transitional modes

- Nucleation and pre-stress level
determine rupture style

— Transitions between decaying pulses,
growing pulses and crack-like rupture
(compare Nielsen & Madariaga 2003;
Festa & Vilotte 2006; Shi et al. 2008;
Ampuero and Ben-Zion 2008)
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Accumulated slip on the fault with varied initial background shear stress level
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- Phase transitions of steady-state and
pulse-crack superposition shift with
varied nucleation and pre-stress

- Supershear transition is independent

3.5

2.5

0.5

0 50

of nucleation and rupture mode modes

Phase diagram — Rupture modes in parameter space
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Accumulated slip on fault /D

transition o0+

—pulse-crack transition

—pulse—crack transition

- - - steady-state transition, self-healing nucleation
, self-healing nucleation

- - - steady-state transition, non-healing nucleation 0
, hon-healing nucleation

- Off-fault plasticity shifts
transformational modes in the
respective parameter space

- Qualitatively unaltered rupture

Rupture modes with the onset of off-fault plasticity
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- Increasing plasticity level (V) :
shorter range of growing pulses

- Decreasing W :
shift to smaller nucleation
duration/background stresses

- Increasing nucleation duration T :
spreading the range of growing pulses to
lower background shear stress levels

Phase shift with the onset of plasticity
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We apply the 2D spectral element method (SEM2DPACK of Ampuero, 2008) to model spontaneous rupture under strong velocity-and-state-dependent friction
with off-fault Coulomb plasticity in a 2D in-plane model . Depending on initial parametrization and nucleation procedure the generated ruptures approach
distinct zones of stable self-similar behavior: decaying, steady-state, growing pulse-like and crack-like ruptures, in both, sub- and super-shear regimes,
bordered by sensitive transitional zones. The introduction of off-fault inelasticity quantitatively modifies the conditions to obtain each rupture mode, depending
on the angle of maximum compressive initial stress and background shear stress level. Additionally, the considerable amount of induced off-fault energy
dissipation alters macroscopic source properties, e.g. leads to slower rupture velocities, lower peak slip rates and lower shear stress levels on the fault with
respect to the purely elastic case. The interaction between rupture modes and the induced off-fault energy dissipation contributes to the rupture energy

balance of the earthquake, which is relevant for prediction of observable earthquake source parameters and strong ground motion.
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Macroscopic source properties in plastic media
- Focus on (self-similar) growing pulses regime to study the interaction of pulse-like dynamics and off-fault plasticity
- The onset of plasticity leads to :
 Lower peak sliprates and faster  Shorter rise times  Plastic component of seismic moment  Plastic dissipated energy dependent
saturation into self-similar behavior * Rise time is proportional to position as induced off-fault by plastic strain field on W
consequence of self-similarity
Peak sliprate with the onset of plasticity Cumulative plastic energy Kinetic energy Total change in elastic energy
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Conclusions and Outlook

We have explored, through numerical simulations, the interaction of rupture modes under velocity-weakening friction with off-fault plasticity. We especially focus
on the growing pulse regime, which is considered to convergence into self-similar, nucleation-independent behavior. The onset of plasticity preserves qualitatively

all elastically defined rupture modes, but shifts the sharply defined mode transitions in the respective initial parameter space. Initial conditions to allow rupture

mode transition can be summarized in a dynamically defined strength excess parameter, the dynamic seismic ratio S, . Macroscopic source properties are altered

considerably by off-fault energy dissipation at the crack tip, to which amount is depending on the maximum compressive angle of initial stress and the overall pre-
stress level of the fault. Future work will quantitatively relate various observable earthquake properties, as the apparent fracture energy (frictional plus plastic
dissipation), rupture and healing front speed, peak slip and slip velocity, dynamic stress drop and size of the process and plastic zones, and draw the comparison to
analytical solutions available for steady state-like rupture in elastic media (Zheng & Rice (1998), Rice (2005) ) and self-similar growing pulses. Furthermore, we will

endeavor to obtain parameterizations that mimic off-fault yielding to be implemented in pseudo-dynamic source characterizations.
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