Non-equilibrium statistical mechanics of geophysical flows

Freddy Bouchet1, Marianne Corvellec1, and Eric Simonnet2

(1) Laboratoire de Physique, ENS de Lyon, CNRS, Lyon, France
(2) Institut Non Linéaire de Nice, UNS, CNRS, Valbonne, France

April 5, 2011
EGU, Vienna
Non-equilibrium phase transitions in real flows

Rotating-tank experiments (quasi-geostrophic dynamics)

Transitions between blocked and zonal states:

Barotropic quasi-geostrophic dynamics
Random transitions in other turbulence problems

Non-equilibrium statistical mechanics of geophysical flows

Magnetic field reversal (turbulent dynamo, MHD)

VKS experiment, Earth

Other examples:

- Turbulent convection, Von Kármán and Couette turbulence
- Random changes of paths for the Kuroshio current, weather regimes, ...
2D Stochastic Navier–Stokes equations

Limit of weak forcing and dissipation

\[\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = \nu \Delta \omega - \alpha \omega + \sqrt{2\alpha} f_s, \]

- Time scale separation: turnover time \(1 \ll 1/\alpha \) = forcing or dissipation time

- At lowest order, we are left with the conservative dynamics. The flow self-organizes and converges towards steady solutions of the 2D Euler equations, i.e.,

\[\mathbf{u} \cdot \nabla \omega = 0 \iff \omega = f(\psi), \]

where the stream-function \(\psi \) is given by \(\mathbf{u} = \mathbf{e}_z \times \nabla \psi. \)

- Degeneracy: how is \(f \) selected?
Equilibrium: 2D Euler equations

• Hamiltonian, time-reversible

• Nonlinear transport of the vorticity \(\omega = (\nabla \times u) \cdot e_z = \Delta \psi \)

• Invariants:

Energy: \[\mathcal{E}[\omega] = \frac{1}{2} \int_{D} u^2 = -\frac{1}{2} \int_{D} \psi \omega = E_0 \]

Vorticity distribution: \[d(\sigma) = \frac{dA}{d\sigma} \quad \text{with} \quad A(\sigma) = \int_{D} \chi_{\{\omega(r) \leq \sigma\}} \]
Equilibrium statistical mechanics (most probable vorticity field)

- **Probabilistic description** of the vorticity field $\omega(r)$: local probability $\rho(\sigma, r)$

- Measure of the phase space volume (here, number of microscopic fields ω corresponding to probability ρ):

 \[
 \text{Boltzmann–Gibbs entropy: } S[\rho] = -\int_D \mathrm{d}r \int_{-\infty}^{+\infty} \mathrm{d}\sigma \rho(\sigma, r) \log \rho(\sigma, r)
 \]

- **Microcanonical RSM variational problem** (MVP):

 \[
 S(E_0, d) = \sup \{ S[\rho] \mid E[\omega] = E_0, D[\rho] = d \}
 \]

- Critical points are stationary flows of the Euler equations:

 \[
 \omega = f(\psi).
 \]

- Statistical equilibria can be proven to be invariant measures of the 2D Euler equations.

Equilibrium States for 2D Euler (doubly periodic BC)

Normal form analysis (Liapunov–Schmidt reduction)

Parameters
- g: domain geometry
- E: energy
- a_4: nonlinearity of the vorticity–stream-function relation ($f(\psi)$)
Numerical simulation of 2D SNS

Non-equilibrium statistical mechanics of geophysical flows

Applications

(Play movie)

Stochastic Navier–Stokes 2–D periodic

Very long relaxation times ($\sim 10^5$ turnover times)
Out-of-equilibrium phase transitions

Time series and PDF of the order parameter

Order parameter: \(z_1 = \int dx dy \exp(iy)\omega(x, y) \)

For unidirectional flows, \(|z_1| \simeq 0 \); for dipoles, \(|z_1| \simeq 0.6-0.7 \).

Strong eastward jets are statistical equilibria.

(Play movie)

Statistical equilibria of the QG $^{1/2}$-layer model in a closed basin:

- States with positive PV to the north (eastward jet) and states with positive PV to the south (westward jet) are equivalent.
- Beta effect $h(y) = \tilde{\beta}y$ breaks the symmetry between westward and eastward jets.

Ocean rings (mesoscale ocean vortices)

Gulf Stream rings, Agulhas rings, Meddies, etc.

• A large part of mesoscale variability is explained by rings of size 100–200 km (several Rossby deformation radii R_d).

• Both cyclonic and anticyclonic rings drift westward with velocity βR_d^2.

Non-equilibrium statistical mechanics of geophysical flows

Non-Eq Stat Mech

2D SNS

Applications

Looking for new problems to solve? Consider the climate

Brad Marston

Department of Physics, Box 1942, Brown University, Providence, RI 02912-1943, USA

Published March 7, 2011

Even though global warming remains a heated political topic, physicists should not ignore the intellectual challenge of trying to model climate change.

"Climate is what we expect; weather is what we get." [1]

Climate is a problem of out-of-equilibrium statistical physics

Climate is not weather. As science fiction writer Robert Heinlein quipped, the chaotic and unpredictable nature of weather confounds our expectations, leading weather reporters on television to say respectfully "we should only get four..."
Summary

Situations of bistability are common in geophysical turbulent flows.

Take-home messages:

1. Using **statistical mechanics**, phase transitions can be predicted for the 2D Navier–Stokes equations and Quasi-Geostrophic model.

2. We can observe the expected **out-of-equilibrium phase transitions** in the 2D SNS.

3. **Ocean rings and jets** are statistical equilibria.