
The thermomechanical evolution of the Earth remains a highly disputed subject. There are, however, some seemingly robust ob-
servations. A few are the focus in this study: (a) Tomographic studies, reconstruction of continental motion and rotation, and 
geodynamic modeling infer that the antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle 
are stable, long-lived and impose the planform of flow in the mantle and of plate tectonics at the surface (Dziewonski 2010). (b) 
Studies of post-glacial rebound data, geoid highs and lows and geochemical mixing suggest that the average lower mantle vis-
cosity is between one or two orders of magnitude greater than that of the upper mantle (Dziewonski 2010).
In this study, the geometry of the mantle is approximated by a hollow cylinder. The inner and outer mechanical boundary condi-
tions are free slip and free surface, respectively. Fixed temperatures are prescribed for the thermal boundary conditions. The 
mantle flow is in the Stokes regime and the Boussinesq approximation applies. Newtonian rheological behavior is employed 
with a viscosity that depends exponentially on temperature. The large-scale heterogeneities at the base of the mantle are intro-
duced as material of an anomalous viscosity and density.
Both structured and unstructured FEM codes are developed for solving the conservation equations of energy and momentum 
together with the incompressibility constraint. The advection-diffusion equation is solved in two separate steps. A FEM solver is 
developed to model diffusion process. A mechanical solver from MILAMIN is utilized to calculate velocities. An ODE-solver is de-
veloped to model advection.
One of the objectives in this study is to develop a robust non-diffusive advection solver. Eulerian-Lagrangian advection algo-
rithms are conventionally used to minimize numerical diffusion.  In this study, three different ode-solvers are devised and com-
pared based on their numerical cost and the obtained accuracy. 
Both structured and unstructured codes are benchmarked by reproducing critical Rayleigh number and Nusselt-Rayleigh scal-
ing for rectangular geometry, provided by the linear stability analysis and the thermal boundary layer theory, respectively. Meth-
ods are tested based on convergence of measures, such as Nusselt number, with successive grid and time-step refinement. The 
convection pattern and Nusselt-Rayleigh relation are compared to results from previous numerical modeling by other authors. 
Analytical solutions are derived where possible and used for benchmarking.
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OBSERVATIONS

• Seismic  tomography reveals two antipodally located Large 
Low Shear Velocity Provinces (LLSVPs) in the lower mantle, 
with steep margins and extending up to 1000 km from the 
core-mantle boundary.

• Bulk sound velocity and shear velocity within the LLSVPs are 
negatively correlated.

• Restored eruption sites of LIPs and hotspot volcanoes, as old 
as 200 Ma, project radially downwards to the margins of the 
LLSVPs

INTERPRETATIONS
• The LLSVPs are stable, long-lived and impose the 
planform of flow in the mantle.

• The seismic velocity reduction is due to thermal as 
well as chemical and/or phase variations, inferring 
that LLSVPs are comprised of material with a moder-
ate density contrast (2-5 %).

Figure 2: A cartoon of the equatorial cross-section outlining a 
proposed circulation in the mantle.

Figure 1: Reconstructed large igneous provinces, hotspots argued to have 
deep origin and kimberlites for the past 320 Myr with respect to shear-
wave anomalies at the base of the mantle. 

ODE SOLVERS
Transport of material due to convective dynamics is modeled by solv-
ing the discretized advection equation. To do this, three ordinary differ-
ential equation (ODE) solvers are developed and compared: Euler’s 
method, fourth-order Runge-Kutta method and the embedded fifth-
order Runge-Kutta method. An analytical solution is found for the prob-
lem of a passive marker advecting in a shear cell setup. The time it takes 
for a marker to complete a full rotation cycle and return to its original 
position is calculated and used to estimate the error of the numerically 
obtained positions.

ANALYTICAL SOLUTION OF THE TIME TO 
COMPLETE ONE ROTATION CYCLE:

Figure 6: Stationary velocity field in 
a shear cell setup.

Figure 7: Scaling of error with stepsize for Euler and 
fourth-order Runge-Kutta methods.

Figure 8: Correspondance between prescribed and 
achieved error for the embedded fifth-order Runge-
Kutta method.

FEM DIFFUSION SOLVER
The conductive heat transport is modeled by solv-
ing the discretized equation of the transient heat 
diffusion. To do this, a FEM diffusion solver is devel-
oped. Performance of the solver is evaluated for 
different element types and grid resolutions. An 
analytical solution is found for the problem of a 
cooling cylinder in two dimensions, and used to es-
timate the error of the numerically obtained solu-
tion.

Figure 3: An unstructured triangular 
mesh split into quadratic elements.

Figure 5: Analytical and numerical transient solutions to the cooling cylinder prob-
lem. First-order elements are used for the space-discretization.  Left: Mass matrix is 
not lumped. Right: Mass matrix is lumped.

ANALYTICAL SOLUTION OF A 
COOLING CYLINDER:

Figure 4: Scaling of the relative error norm L2 with grid size for triangular (left) and 
quadratic (right) elements with first- and second-order shape functions used for 
space-discretization.

THERMOMECHANICAL CONVECTION 
IN A RECTANGULAR DOMAIN

A thermomechanical FEM code is developed to model con-
vection in a rectangular domain. Free slip boundary condi-
tions are applied along the four sides of the box with aspect 
ratio 10.  Two separate grids are used to compute velocity and 
temperature.  Results for different element sizes for both 
grids are presented in Figure(). The Nusselt number is calcu-
lated along the top boundary and compared to the analytical 
solution provided by the boundary layer theory.
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PHYSICS OF THE MANTLE DYNAMICS

GOVERNING PARAMETERS:

Rayleigh number
controls the vigor of convection

Nusselt number
measures the efficiency of con-

vective heat transport

Viscosity ratio

Conservation of mass

GOVERNING EQUATIONS:

Conservation of energy

Conservation of momentum

APPROXIMATIONS:

• Boussinesq approximation applies

• The flow is in Stokes Regime

• Rheological behaviour is Newtonian
 

• Viscosity varies exponentially with 
temperature

Viscosity-temperature dependence
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Solving onset of convection problem for a plane layer heated from below results in 
analytical solution for critical Rayleigh number. For a system where both boundaries 
are isothermal and shear stress free, this value is 

RESULT FROM LINEAR STABILITY ANALYSIS:

Considering systems with high Rayleigh numbers, changes in temperature can be re-
stricted to the thin thermal boundary layers adjacent to the boundaries. From this, the 
Nusselt – Rayleigh scaling may be derived, which results in following relation 

RESULT FROM  BOUNDARY LAYER THEORY:

Figure 14: Time average of the Nusselt number 
obtained from numerical simulations with dif-
ferent thermal and mechanical grid resolu-
tions. Analytical solution is plotted as a thick 
dashed line. Thin dashed lines are the fitted 
power-law functions. Total time of simulation 
is 3e-3* k / (c_p * rho * b^2).

Figure 9: Patterns of thermal convection for different thermal and mechanical 
grid resolutions. Total time of simulation is 3e-3* k / (c_p * rho * b^2).

Figures 10-13: Nusselt number com-
puted at the top boundary for differ-
ent thermal and mechanical grid 
resolutions as a function of time.
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THERMOMECHANICAL CONVECTION IN A HOLLOW CYLINDER DOMAIN 7

8CONCLUSIONS

Using two separate grids for calculating velocities and temperatures allows having a coarser grid for the mechanical solver 
without significantly affecting the result.

It is advantageous to use higher-order ODE-solver schemes, such as the fourth-order Runge-Kutta, to model advection, since 
their computational cost is still low compared to the cost of the thermal and mechanical solvers.

Studying convergence of the Nusselt number with subsequent refining of the thermal and mechanical grids has shown sig-
nificant dependence of the numerically obtained result on the grid resolution. The effect of numerical diffusion is influential 
on the result in a poorly refined grid.  To model convection with Rayleigh number equal to 10^7 in a rectangular domain, a 
resolution of 400x4000 for the thermal grid is required to obtain a convergent result.


