

Extensive aerosol retrieval algorithm evaluation within ESA aerosol_cci project

Thomas Holzer-Popp (DLR), Gerrit de Leeuw (FMI) & the Aerosol_cci team

aerosol_cci team

EO team

aerosol_cci concept

understand differences of various products

integrate major European EO teams

User requirements

• GCOS as baseline, elaborated by AEROCOM (model development, trend monitoring) and MACC (assimilation for re-analysis)

• overall user needs: easy availability (netCDF), proven and documented quality, aerosol species linked to source categories, observation of long-term trends (many years) for regions and globally, prepare for easy and complete re-processing with new versions

- Level2 products for data assimilation:
 - AOD at 4 wavelengths (440, 550, 670, 870 nm) and several layers
 - 500 (1000) observations per hour
 - with pixel level uncertainty (random + systematic)
 - consistent with clouds and fire
- Level3 products for model comparison
 - Angstrom coefficient (440-870), fine mode fraction (D<1µm), dust fraction
 - Absorption aerosol optical depth (or single scattering albedo)
 - Aerosol vertical extinction / AOD profile (any information is valuable)
 - Accuracy: combined absolute (low AOD) and relative (high AOD)
 - Error characteristics

User requirements

Regional averages of AOD 2007-2009

derived stability need

regional AOD range (0.1 - 0.5) * 5% trend detection -> 0.005

User requirements

Satellite variable (reference dataset)	required RMS at superpixel level of 10x10 km ²	required RMS at climate model grid level of 1°x1°	required RMS at regional level of 1000x1000 km ²
Aerosol optical depth at 550nm and other wavelengths (Aeronet global dataset daily mean)	20% or 0.05	10% or 0.02	0.02
Fine mode fraction (Aeronet global dataset daily mean)	20% or 0.1	20% or 0.1	0.1
Dust fraction (Coarse fraction from Aeronet global dataset in known dusty conditions daily mean)	30% or 0.2	30% or 0.2	30% or 0.2
Absorption optical depth (Absorption optical depth computed from SSA and size of Aeronet daily mean)	20% or 0.05	20% or 0.02	0.02

Product specification

Product name	Parameter(s)	sensors	level	comment	
Tropospheric / total co	olumn products				
Single-sensor AOD / type	Multi-spectral AOD Aerosol type probability Fine mode AOD	ATSR-2 / AATSR MERIS POLDER	Level2,3	Multi-spectral AOD depending on instrument capabilities. Ångstrom coefficient can be derived from multi- spectral AOD. Aerosol type may include information on fine / coarse mode fraction and chemical	
Synergetic AOD / type	Multi-spectral AOD Aerosol type probability	AATSR/SCIAMACHY ATSR-2/GOME AVHRR/GOME-2	Level2,3		
AAI	Absorbing aerosol index averaging kernel	OMI SCIAMACHY GOME	Level2,3		
Merged AOD / type	Multi-spectral AOD Aerosol type probability	Combining several level2 with appropriate wighting	Level3	components, which together best describe the observations	
Aerosol type "climatology"	Aerosol type probability / dominant aerosol type	All AOD products	Level3	Based on one year of data	
Stratospheric products					
Extinction	Gridded extinction profile	GOMOS (SCIAMACHY)	Level3		

- define common small set of components for inter-comparisons
- mixing by fine mode fraction, coarse (salt or dust), fine mode absorption
- test AEROCOM median a priori
- test retrievals with fixed a priori and free selection of properties

Aerosol Component	Real part Refr. Index (550 nm)	Im. Part Refr. Index (550 nm)	Reff* (µm)	Geom. stdv	Geometric mean radius (µm)	Comments	Aerosol layer height
Dust [§]	1.56 (varies with wavelength) [§]	0.0018 (varies with wavelength) [§]	1.8	1.82	0.79	Non-spherical	Fixed hgt at 2-4km
Sea salt	1.4	0	1.82	1.7	0.9	AOD threshold constraint [#]	0-1 km
Fine mode very weak-abs	1.4	0.003	0.142	1.7	0.07	(ssa at 500 nm: 0.98)	0-2 km
Fine mode strong-abs	1.5	0.025	0.142	1.7	0.07	(ssa at 500 nm: 0.80)	0-2 km

see poster by Gerrit de Leeuw et al.

- define common small set of components for inter-comparisons
- mixing by fine mode fraction, coarse (salt or dust), fine mode absorption
- test AEROCOM median a priori
- test retrievals with fixed a priori and free selection of properties

AEROCOM a priori

Cloud masking

- compare different cloud masks
 - various AATSR algorithms / AATSR versus MERIS / versus PARASOL
- transfer to larger spectrometer pixels
- prepare common cloud mask for selected inter-comparison
- compare to external reference datasets (SYNOP, MODIS/CALIPSO)

Surface treatment

- analyse different approaches (multi-angle, multi-spectral, polarisation)
- over ocean use common auxiliary datasets and modules

(e.g. white caps / ECMWF ERA interim)

- analyse critically independence from other retrieval results (e.g. Globcolour)
- over land compare with external reference reflectance (e.g. MODIS AERONET corrected)
- test use of common surface reflectance and BRDF dataset (MODIS, POLDER)

Analysis tools

- MPI scoring (level2)
 - spatial patterns, bias, noise
 - versus AERONET
- ICARE statistical inter-comparison (level2, level3)
 - envelope criterium
 - versus AERONET, MACC forecasts
 - versus other satellites (MODIS, POLDER, CALIPSO, OMI, SEVIRI)
- AEROCOM model inter-comparison (level3)
 - versus model median

esa

MPI tools

rank total seaso bias space data refer error bias data-set 1 -0.772 0.936 -.888 0.929 0.166 0.157 0.24 0.030 _sky_8 2 0.656 0.934 0.844 0.832 0.172 0.159 0.42 0.14 mo5a_8 3 0.640 0.938 0.827 0.825 0.175 0.157 0.46 0.18 mo5t_8 4 0.607 0.889 0.830 0.823 0.177 0.155 0.44 0.19 mo5c_8 5 0.587 0.928 0.812 0.779 0.170 0.152 0.47 0.23 misr_8 6 0.569 0.843 0.802 0.842 0.143 0.153 0.48 0.059 clim_8 7 0.557 0.835 0.795 0.838 0.145 0.153 0.49 0.070 median

ICARE tools

PARASOL CCI (fine mode)

ORAC AATSR CCI

MODIS AQUA

MERIS standard CCI

10 September 2008

ICARE tools

PARASOL CCI (fine mode)

ORAC AATSR CCI

MODIS AQUA

MACC forecast

10 September 2008

ICARE tools

source: AEROCOM

[]

AEROCOM tools

source: AEROCOM

Longitude

OD550_AER 2008 09 mean 0.151

Longitude

AEROCOM tools

Conclusion

- phase 1 (summer 2011) analysis of various retrieval versions
 - test dataset global September 2008
 - 8 tropospheric algorithms
- phase 2 (autumn 2011) round robin
 - dataset global March, June, September, December 2008
 - 8 tropospheric algorithms
- phase 3 (autumn 2012)
 - ECV production global all 2008
 - 5 tropospheric algorithms + merged dataset(s)
- validation with established tools in all stages
- evaluation by AEROCOM (MACC)
- further analysis: synthetic case studies, information content analysis

Product uncertainties

Error on the retrieved AOD

integrated Q/A flag

Product uncertainties

An example: synergetic retrieval algorithm (first estimation based on validation results)

Error source	Absolute error contribution	comment
calibration	TBD	Can be critical
Radiative transfer	negligible	Error due to Mie calculations for dust TBD
Noise due to pixel size	0.05	Varies for different continents
Cloud fraction	TBD	Validation showed that pixels up to cloud fraction of 35% can be exploited for the retrieval
Surface reflectance	Land: $0.05 - 0.15$ (for visible surface reflectance from $0 - 0.25$) Ocean: $0.03 - 0.1$ (for visible surface reflectance from $0 - 0.05$)	
Choice of wrong aerosol type (spectral extinction, absorption, phase function)	0 – 0.2 for AOD550 0. – 1.	Is estimated for each pixel by identifying ambiguous aerosol types through comparing quality of fit with difference between aerosol types with similar spectra)

esa

SYNAER: analyzed information content of spectrometer

GCOS requirements

- Aerosol optical depth
 - accuracy
 - stability
 - resolution
- Other aerosol properties
 - to supplement AOD
 - e.g. single scattering albedo
 - accuracy
 stability
 0.02
 0.015 / decade
- Comprehensive ground-based independent validation
- -> can not be met (per pixel) by any satellite product

<u>goal</u> 0.01 0.005 / decade 1 km / daily <u>threshold</u> 0.02 N/A 10 km / weekly

Stratospheric aerosol

esa

Use of in situ data

Zieger et al., Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw, ACP, 11, 2603–2624, 2011

- joint definition of micro-physical / optical aerosol types
 - -> consistent inter-comparisons between different algorithms / use for all prototype ECVs
- cloud masking comparison and optimization between 4 ATSR and AVHRR/3 algorithms
 -> reference for sensors with lower resolution or smaller spectral coverage
- inter-comparison of different approaches for treatment of surface reflectance and BRDF
 -> optimal / combined solutions identified for ATSR, MERIS, POLDER instruments
- inter-comparison of auxiliary data used by the different retrievals
 -> harmonized datasets (elevation, land cover, ocean reflectance, BRDF, humidity, ...)
- investigate merging of datasets and pixel selection / outlier screening
 -> proper error weighting for merging different AOD from complementary sensors
- improve stratospheric limb products (longitudinal dependance)
 -> correction of nadir products for volcanic cases

Sampling impact

Sayer et al: Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields, ACPD, 10, 17789-17814, 2010.