Long-term observations of nitrate radicals at a semiarid urban site

David Asaf

D. Pedersen, V. Matveev, D. Pedersen, M. Peleg, M. Luria and U. Platt

April 2011

The Air Quality Research Laboratory THE INSTITUTE OF EARTH SCIENCES THE HEBREW UNIVERSITY, JERUSALEM

- The NO₃ makes an important contribution to the oxidizing capacity of the troposphere (second to OH radical)
- Plays a role as a nighttime sink for NO_x
- Reacts with a number of VOC's initiating their night time degradation
- Plays a major role in the conversion of NO_x to reservoirs N_2O_5 and HNO₃ through a non-photochemical process

Nighttime Chemistry

Objectives

 Describe seasonal and spatial patterns in the behavior of the nitrate radical

Document NO₃ interaction with other tropospheric gases under the current conditions and evaluate the contribution of its different sinks

 Evaluate its oxidation potential and contribution to the transformation and removal of atmospheric compounds

Meteorology:

- Temp
- RH
- WDS WDD
- Pressure
- Solar Radiation

Time series

Avg: 27.3±43.5 ppt

	950	\frown				\frown				\bigcirc	
	800	Sum	Aut	Win	Spr	Sum	Aut	Win	Spr	. Sum	
	750	1	Ĭ.				į		/		1
	700	Å	1				1	1			
	650	4	1					1			
	600	-								1	
	550	-						i			
	500	-						:			
Σ	450	- +						1		,	
dd	400	- 1								1	
ň	350	-	i			:	1	i		:	
ž	300	-					:		1000		
	250	-	ļ t					, !			
	200										
	150										
	100										
	50										/
	0										_
		J. A.	5.0.1		A.M.	0.00.00.00	0,1,0	0.0.0.4		•	
		v.	5 5 5	-5 -5 -00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.0.0	°° °° °°	0.7.7		BY	

Diurnal analysis

Season	eason Direct loss indicators		τNO₃ due to Indirect loss indicators	
	$[NO_3] = a \times (P_{NO3}) + b^{(R^2)}$			effect of indir.
		losses (min)	$\ln(\tau(NO_3)) = -a \times \ln[NO_2] + b (R^2)$	losses (min)
Campaign	y = 458.7x - 37.2(0.27)	3.3	y = -0.6x + 6.8(0.34)	7.8

Relative humidity Vs. NO₃

Highest levels of NO3 ever reported

25th of July, 2007

<u>Meteorology</u>

Half hourly mean observations of [NO₃], [NO₂], [NO₃], P_{NO3}, f_{NO3} , τ_{NO3}

-10 0.0001 a) 18:00 20:00 22:00 0:00 b) 18:00 20:00 22:00 2:00 4:00 6:00 c) 18:00 20:00 22:00 0:00 8:00, 2:00 4:00 6:00 8:00 0:00 2:00 6:00 8:00 4:00

The indirect loss contributes to a lifetime k^{-1} of about 17 min, which is 1/3 of the direct loss. NO₃ lifetimes calculated using only the degradation of NO₃ by VOCs, yielded lifetimes of ~600 sec, similar to the average NO₃ lifetimes of ~ 750 sec calculated from the steady state assumption between 20:00 - 01:00, demonstrating the importance of VOCs as a sink for NO₃

Comparison of the relative contribution of NO_3 , OH and O_3 to the 24-hour integral of the oxidation rate at Jerusalem

Data is calculated for all 30 VOCs

 $OC = \sum k_{HC_i-X} [HC_i] [X]$ i=1

Comparison of the NO₃ and oxidation potential in the boundary layer

Average values	Pabstthum (Summer)	(All year)
Nighttime average maxima of	~10, peak of 70	~200, peak of 800
NO ₃ , ppt		
Maximum average of $\tau(NO_3)$,	~100-400	~100-1500
sec		
Relative oxidation capacity of	O ₃ - 17%	O ₃ - 3%
VOCs	NO ₃ - 28%	NO ₃ - 68%
	ОН - 55%	ОН - 29%
Relative oxidation capacity of	O ₃ - 19%	O ₃ - 4%
olefinic VOCs	NO ₃ - 31%	NO ₃ - 73%
	ОН - 50%	ОН - 23%
Reference	(Geyer et al., 2001)	This study

•Geyer, A et al., Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin *J. Geophys. Res.* **2001a**, *106*, 8013-8025.

Seasonality:

- Highest average and peak [NO₃] during summer & early mornings - Largest P_{NO3} and ozone intrusion during summer, accompanied by lower degradation frequencies
- Negative correlation between $NO_3 \& T_{NO3} vs. RH$

Losses:

- Direct loss processes of NO₃ predominate in the urban atmosphere and shorten its lifetime, especially during the warmer seasons
- Cold seasons are dominated by indirect N_2O_5 losses

Extreme elevated [NO₃] are consequence of:

- Increase in $[O_3]$; $[NO_2]$; T_{NO3} ~25min
- Decrease in RH; [NO]; f_{NO3}
- NO_3 is a dominant oxidant under urban conditions

Acknowledgments

- To the HUJI air quality lab
- The financial support for the present project was provided by the GIF

