Magnetotail thermal electrons as tracers of thin current sheets fine structure

L.M. Zelenyi¹ A.V. Artemyev¹ A.A. Petrukovich¹ R. Nakamura²

¹Space Research Institute (IKI), Moscow ²Space Research Institute (IWF), Graz

Thin current sheets in the Earth magnetotail

Observed current density profiles can be approximated by thin current sheet (TCS) model (Zelenyi et al. 2004)

Profiles of electron temperature

The growth of the electron temperature corresponds to the growth of $\mathbf{B}_{\mathbf{z}}$

Tverskoy 1972 $T_e \sim B_z^{2/5}$ For particles with
distant mirror pointsLyons 1984 $T_e \sim B_z^{2a}$, $a \sim 1/3$

Electron heating due to earthward convection

Theoretical model of the electron heating

Electron temperature profiles for various values of current sheet parameters: L_x , B_z , B_0

Comparison of model profiles $T_e(B_x)$ and observations

The estimates of current sheet parameters from comparison of observations and model profiles T_e(B_x)

As a result, we obtain the statistics of L_x

Distribution of L_x estimates

The ratio L_x/L and pressure balance in TCS

For the 2D current sheet $\lambda = 1$, and longitude pressure balance is maintaince due to the gradient along x (*Schindler 1972, Lembege and Pellat 1982*). For TCS $\lambda > 1$ and part of pressure balance corresponds to the inertia of transient particle motion (*Burkhart and Chen 1993*)

conclusions:

- The dynamics of adiabatic electron in the magnetotail current sheet is essentially influenced by $\partial B_z(x)/\partial x$
- The model of electron adiabatic heating during earthward convection can describe the observed profiles of $T_e(B_x)$ with the reasonable accurancy
- The comparison between the model and observed profiles $T_e(B_x)$ allow to estimate the longitudial spatial scale of current sheet $L_x \sim (\partial \ln B_z / \partial x)^{-1}$:

 $5 R_{E} < L_{x} < 20 R_{E} < L_{x}/L_{z} > \approx 25 < 2B_{z}L_{x}/B_{0}L_{z} > ~5$

This result points out to the essential role of transient ions in pressure balance