
Multi-scaling properties of remotely sensed oceanic chlorophyll maps

L. de Montera
LOCEAN, Paris, France (Laboratoire d’Océanographie et du Climat : Expérimentation et Approches Numériques)

2

FIF model (Fractionnaly Integrated Flux, Schertzer & Lovejoy, 1987)

Multifractal model and validation Multifractal analysis technique

1- Plot 1st order structure function and verify it is linear

2- Average to cut-off these noisy high frequencies

First order structure function of the 100 SeaWiFS images
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The Senegalo-Mauritanian Upwelling

• High chlorophyll concentration

=> low relative noise

• Very sunny weather

=> large zone of available data

Experimental dataset

100 SeaWiFS chlorophyll maps with no cloud cover
(128*128km, resolution 1*1km, product L2, period: 07/2003-06/2004)  

10-26°N / 14-26°W

mg/m-3

All maps were check manually because
of isolated unrealistic pixels.
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Abstract: The analysis of chlorophyll maps measured by the SeaWiFS orbiting sensor shows multifractal properties that are consistent with the statistical theory of turbulence. Therefore,within this scale range (1-128km),
turbulent mixing seems to be the dominant effect explainingphytoplankton variability. Moreover, multifractal patchiness can cause significant biases in the nonlinear terms involved in biogeochemical numerical models.
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Kolomogorov-like law for 
chlorophyll concentration:

Multifractal intermittency:Scaling of statistical moments
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The hypothesis of homogeneity at the pixel scale biases the nonlinear
terms of the equations in numerical simulations

Parameters obtained in laboratory are not valid at a larger scale!

Therefore it is necessary to correct the parameters involved in
numerical simulations by using empirical multifractal
parameters.

Possible application in numerical simulations 4
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3- Fractionally differentiate the process (or take the
norm of the gradient)

4- Reconstitute the cascade by successive averaging of
contiguous data

5- Estimate the multifractal parameters with the
scaling of the moments for each order and scale

Example of the reconstitution of a multiplicative cascade 

Link with Kolmogorov-Obukhov-Corrsin theory 3

of isolated unrealistic pixels.

Is it possible to describe these chaotic
and highly heterogeneous data in a
simple way?

Multifractal parameters: 

H=0.4   α=1.92  C1=0.12

Semi-theoretical prediction of parameter H

If variability is due to turbulent mixing, then it is like a passive scalar:

Example:

1/ Suppose a term of the form β.Chl2

1/ Compute Chl2 at 1*1km resolution

2/ Compute Chl2 at 128*128km resolution

3/ Plot the distribution of the difference

Error on parameter β: 22%
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Logarithm of multiplicative weights

PDF of log of cascade weights 
for each resolution
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In the studied scale range, turbulence seems to be the main
cause explaining the observed variability

Kε(1/6) is due only to turbulence and is well-known (equal to -0.05)

Kχ(1/2) has to be estimated using multifractal parameters of ζ:

Finally H=0.33-0.05+0.11=0.39 which is consistent with the
empirical value


