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In an excitable autonomous dynamical system, self-sustained relaxation

oscillations (ROs) usually emerge past a homoclinic bifurcation (when a

control parameter m, e.g. the forcing amplitude, exceeds a given threshold

m0, a “tipping point”). ROs can however be excited also for m<m0

provided the system is perturbed by a suitable noise (a phenomenon

known as “coherence resonance”, CR). Three main questions arise:

• What kind of noise is required for CR to occur?

• How sensitive is the activation of CR to the distance m-m0 from the

bifurcation?

• If ROs are actually observed in a real system, which of the two

alternatives is most likely to occur? (this point was recently analyzed by

Ditlevsen and Johnsen, 2010, in the context of Dansgaard-Oeschger

events).

This problem was studied by Pierini (2010) with reference to the bimodal

decadal ROs of the Kuroshio Extension. These were revealed by

altimetric observations by Qiu and Chen (2005) and were simulated

numerically by Pierini (2006) and Pierini et al. (2009).
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The low-order ocean model

In order to analyze the low-order character of this phenomenon, a highly

truncated spectral QG ocean model was recently developed and applied to

the same problem by Pierini (2011). In this poster we summarize the main

results concerning CR and a method (denoted as “phase selection”)

proposed to analyze the excitation mechanism. The intrinsic low-

frequency variability found in the corresponding autonomous system is

discussed in another poster of the same author in session NP3.1.

Phase selection

The model is based on the evolution equation of potential

vorticity in the QG reduced-gravity approximation:

The truncated spectral model is obtained by expanding the

stremfunction  as:

The system reduces to a set of four coupled nonlinear

ODEs:

The nonlinear terms Ni are given by

so that the system can be written in compact form as

follows:

For all the details and parameter values see Pierini (2011).

See also a poster of the same author in session NP3.1.

Coherence resonance

If the model is forced by a time-independent climatological wind stress curl,

intrinsic variability emerges, as shown by the bifurcation diagram (left) for

10-51 versus a normalized wind amplitude m (m=1 corresponds to the

homoclinic bifurcation, the dot denotes the first Hopf bifurcation and the

thick dashed line the branch of the unstable steady state).

Examples of orbits in the 1-3 (black) and 2-4 (gray) planes are shown

for local oscillations just before the homoclinic bifurcation (m=0.991, right-

upper panel) and for relaxation oscillations just after it (m=1.043, right-

lower panel).

Let us now force the system with the time-

dependent forcing:

where the temporal coefficient G(t),

Fig. (1) shows G with e1=0.2 (e2=0) for a white noise (a) and for a red noise

with a decorrelation time Ts=0.05 yr (b), Ts=0.1 yr (c), Ts=1 yr (d), Ts=5 yr (e),

and Ts=10 yr (f). In the same figure (a’, b’, c’, d’, e’, f’) show the corresponding

model response in terms of 10-51 with m=0.957. Fig. (2) shows the orbits for

m=0.957 under steady forcing (a), and under stochastic forcing with Ts=1 yr

(e2=0) and e1=0.05 (b), e1=0.2 (c), and e1=0.8 (d). These two figures describe the

occurrence of CR and its dependence on the noise decorrelation time.

Fig. (3) shows 10-51 for several values of m and for e1=0.2 (e2=0) and Ts=1

yr (the thick lines show the response with e1=0). This elucidates the sensitivity

of CR to m-m0. Finally, Fig. (4) shows 10-51 for several values of e1 with

m=0.957 and Ts=1 yr. The resulting behavior justifies the term "coherence

resonance": for an optimal range of noise intensity the system "resonates" so as

to produce a strong signal characterized by a series of "coherent" ROs.
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includes an additive noise solution of the

Ornstein-Uhlenbeck equation

where  is a Gaussian white noise with zero

mean and unit variance, c and d are positive

constants, and s is the r.m.s. of .

We have just seen how the occurrence of CR depends in a subtle

way both on the decorrelation time and amplitude of the noise

forcing. Subtle is also the mechanism that leads to the actual

excitation of a single RO. Understanding such mechanism is

obviously of crucial importance, as it would provide valuable

information on the functioning and predictability of the system.

In order to study this we characterize each RO (conventionally

defined here as an oscillation for which the relative maximum

1max of 1 is 1max >  for a given threshold ) by means of

the time tz at which 1 vanishes just before 1max. With =40,

the times tz(k) (k=1,…,Nz=6) are evidenced by the dots in Fig.

(5a) in the case m=0.957, e1=0.1, Ts=1 yr plus a fictitious

periodic component (thick line) with e2=0.2 and 2p/ω=20 yr:

(5)

One can then use the phases to

characterize the excitation. The distribution of the six phases z

shown in Fig. (5b) yields a clustering around  ≈ 200°,

suggesting that those ROs are strongly affected by the phase of

the periodic signal (with that

particular frequency and ampli-

tude): this is what we mean

here by “phase selection” (a

weak form of phase locking).

In the figure to the right the

relative frequency n() of

occurrence of z over 1000-yr-

long time series is shown for 16

different forcings. In most cases

phase selection is clearly active.


