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The low-order ocean model Coherence resonance Phase selection
The_mod_el IS based on the evolqtion equa?ion _of potential ] If the model is forced by a time-independent climatological wind stress curl, We have just seen how the occurrence of CR d_epends In a sub_tle
vorticity in the QG reduced-gravity approximation: . / intrinsic variability emerges, as shown by the bifurcation diagram (left) for Q - way both on the_ decorrelation tlme_ and amplitude of the noise
P 1 | 105, versus a normalized wind amplitude p (un=1 corresponds to the | — forcing. Subtle is also the mechanism that leads to the actual
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The trunca-ted spectral model is obtained by expanding the 0 — ‘i Examples of orbits in the ¥,-, (black) and ¥V, (gray) planes are shown ormation on the u ctioning a p edictability ot the sy-s e
stremfunction y as: : for local oscillations just before the homoclinic bifurcation (u=0.991, right- - In Qrder to study this we c_haracterlze_ each RO (c_onventhnally
. ] \ upper panel) and for relaxation oscillations just after it (u=1.043, right- | defmed here as an oscillation for which the relative maximum
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— R e — | the time t, at which ‘¥, vanishes just before ;... With ©®=40,
| | L e vl (2) D the times t,(k) (k=1,...,N,=6) are evidenced by the dots in Fig.
|11) = e~ sinx siny |3) = e~ **sin2x siny Let us now force the system with the time- i (5a) In the case u=0.957, ¢,=0.1, T=1 yr plus a fictitious
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The nonlinear terms N. are given by constants, and o is the rm.s. of ¢ S o e 3 characterize the excitation. The distribution of the six phases ¢,
. Fig. (1) shows G with &,=0.2 (¢,=0) for a white noise (a) and for a red noise ( ) shown in Fig. (5b) yields a clustering around ¢ = 200°,
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For all the details and parameter values see Pierini (2011). n=0.957 and T=1 yr_- The resulting _behawor_ justifies the term "coherence é;, - / : j% ; \ﬁ/ /q n it o long time series is shown for 16 e
See also a poster of the same author in session NP3.1. resonance”: for an optlmal range Of noise intensity the system "resonates” so as  : pamaanasatananavy O LI i e different forcings. In most cases :-!,|- . . .
to produce a strong signal characterized by a series of "coherent™ ROs. EE phase selection is clearly active. B w».]h ] M ﬁuﬂ




