European Geosciences Union General Assembly 2011 Vienna Austria 03-08 April 2011

## Verification of the new ECMWF ERA-Interim reanalysis and use in a land surface model for the monitoring of Mediterranean droughts

**C. Szczypta** <sup>(1)</sup>, J.-C. Calvet <sup>(1)</sup>, C. Albergel <sup>(1)</sup>, G. Balsamo <sup>(2)</sup>, S. Boussetta <sup>(2)</sup>, D. Carrer <sup>(1)</sup>, S. Lafont <sup>(1)</sup>, S. Faroux <sup>(1)</sup>, B. Decharme <sup>(1)</sup> and C. Meurey <sup>(1)</sup>

(1) CNRM/GAME, METEO-FRANCE, CNRS, Toulouse, France(2) European Centre for Medium-range Weather Forecasts (ECMWF), Reading, UK



## Verification of the new ECMWF ERA-Interim reanalysis: Context

- HYMEX Project
- HYdrological cycle in Mediterranean Experiment
- Objective of the study
- → Developing a soil moisture and vegetation biomass climatology
- → Study over the whole ECOCLIMAP-II area







- Land Surface Model ISBA-A-gs
- Using of ERA-Interim Data (0.5°)





Verification of the new ECMWF ERA-Interim reanalysis: Data sets and methods

# → Qualification of the ERA-Interim reanalysis was necessary for the verification of the forcings before running ISBA-A-gs

- Verification: forcing studies over France
  - Precipitation: SAFRAN (8 km), GPCC (0.5°), GPCP (2.5 °) [1991-2008 period]
  - Incoming Solar Radiation (ISR): Brion (8 km) [1995-2006 period]
  - Air humidity, air temperature and wind speed: SAFRAN (8 km) [1991-2008 period]

(Szczypta et al., 2011)





Verification of the new ECMWF ERA-Interim reanalysis: Data sets and methods

# → Qualification of the ERA-Interim reanalysis was necessary for the verification of the forcings before running ISBA-A-gs

- Verification: forcing studies over France
  - Precipitation: SAFRAN (8 km), GPCC (0.5%, GPCP (2.5%) [1991-2008 period]
  - Incoming Solar Radiation (ISR): Brion (8 km) [1995-2006 period]
  - Air humidity, air temperature and wind speed: SAFRAN (8 km) [1991-2008 period]

(Szczypta et al., 2011)

- Precipitation rescaling: verification over France
  - GPCP-corrected version of ERA-Interim (ERA-I-R) [1991-2008 period]
  - ERA-I-R rescaling with the monthly GPCC water volume [1991-2008 period]



$$\mathbf{P}_{gPCC}^{3h} = \mathbf{P}_{ERA-I-R}^{3h} \times \mathbf{P}_{gPCC}^{month} / \mathbf{P}_{ERA-I-R}^{month}$$







#### Daily time step

- Good correlations ( $R^2 > 0.8$ )

#### Daily time step

- → Good correlations (R<sup>2</sup> > 0.8)
- In comparison to SAFRAN:

| GPCC bias | < | ERA-I-R bias | < | ERA-I bias |
|-----------|---|--------------|---|------------|
| 6%        |   | 13%          |   | 27%        |

| Year        | Score                          | ERA-I | ERA-I-R | GPCC       | GPCP  |
|-------------|--------------------------------|-------|---------|------------|-------|
|             | R²                             | 0.953 | 0.982   | 0.986      | 0.974 |
| [1001 2008] | Bias (mm.month <sup>-1</sup> ) | -21.4 | -10.4   | -4.4       | 0.5   |
| [1991-2008] | RMSE (mm.month <sup>-1</sup> ) | 23.7  | 11.7    | 6.2        | 5.9   |
|             | Mean Precipitation (SA         | FRAN) | 951 m   | m on avera | age   |









#### Daily time step

- Good correlations ( $R^2 > 0.8$ )

#### Daily time step

- $\rightarrow$  Good correlations (R<sup>2</sup> > 0.8)
- → In comparison to SAFRAN:

| GPCC bias | < | ERA-I-R bias | < | ERA-I bias |
|-----------|---|--------------|---|------------|
| 6%        |   | 13%          |   | 27%        |

| Year        | Score                          | ERA-I | ERA-I-R | GPCC       | GPCP  |
|-------------|--------------------------------|-------|---------|------------|-------|
|             | R <sup>2</sup>                 | 0.953 | 0.982   | 0.986      | 0.974 |
|             | Bias (mm.month <sup>-1</sup> ) | -21.4 | -10.4   | -4.4       | 0.5   |
| [1991-2008] | RMSE (mm.month <sup>-1</sup> ) | 23.7  | 11.7    | 6.2        | 5.9   |
|             | Mean Precipitation (SAFRAN)    |       | 951 m   | m on avera | age   |







#### Daily time step

- Good correlations ( $R^2 > 0.8$ )

#### Daily time step

- $\rightarrow$  Good correlations (R<sup>2</sup> > 0.8)
- → In comparison to SAFRAN:

| GPCC bias | < | ERA-I-R bias | < | ERA-I bias |
|-----------|---|--------------|---|------------|
| 6%        |   | 13%          |   | 27%        |

| Year        | Score                          | ERA-I                | ERA-I-R | GPCC  | GPCP  |
|-------------|--------------------------------|----------------------|---------|-------|-------|
|             | R²                             | 0.953                | 0.982   | 0.986 | 0.974 |
| [4004 2009] | Bias (mm.month <sup>-1</sup> ) | -21.4                | -10.4   | -4.4  | 0.5   |
| [1991-2008] | RMSE (mm.month <sup>-1</sup> ) | 23.7                 | 11.7    | 6.2   | 5.9   |
|             | Mean Precipitation (SA         | (SAFRAN) 951 mm on a |         |       | age   |







#### Daily time step

- Good correlations ( $R^2 > 0.8$ )

#### Daily time step

 $\rightarrow$  Good correlations (R<sup>2</sup> > 0.8)



| Year        | Score                              | ERA-I | ERA-I-R | GPCC       | GPCP  |
|-------------|------------------------------------|-------|---------|------------|-------|
|             | R <sup>2</sup>                     | 0.953 | 0.982   | 0.986      | 0.974 |
| [4004 0000] | Bias (mm.month <sup>-1</sup> )     | -21.4 | -10.4   | -4.4       | 0.5   |
| [1991-2008] | RMSE (mm.month <sup>-1</sup> ) 23. |       | 11.7    | 6.2        | 5.9   |
|             | Mean Precipitation (SA             | FRAN) | 951 m   | m on avera | age   |





## → Precipitation verification was extended over the Ecoclimap-II area (Europe, North Africa and Middle-East)









ERA-I-R increase precipitation values: - biases are smaller over Europe

- it tends to overestimate precipitation in coastal regions







ERA-I-R increase precipitation values: - biases are smaller over Europe

- it tends to overestimate precipitation in coastal regions

ERA-I-R precipitation are still underestimated in the North of Europe







ERA-I-R increase precipitation values: - biases are smaller over Europe

- it tends to overestimate precipitation in coastal regions

ERA-I-R precipitation are still underestimated in the North of Europe

CNIS

Trend seems to be different in the area between the Black Sea and the Caspian Sea

South of the area: dry climate with weak precipitation



## Verification of the new ECMWF ERA-Interim reanalysis: Incoming Solar Radiation (ISR) over France



Daily time step (2001 = standard year)

- Good correlations (R<sup>2</sup> > 0.9)
- SAFRAN tends to underestimate ISR (4%)
- ERA-I tends to overestimate ISR (7%)
- ERA-I overestimation is greater in summer



EGU 03-08 April 2011 HS2.8 – Verification of ERA-Interim reanalysis camille.szczypta@cnrm.meteo.fr

#### Monthly time step [1995-2006]

- Same results
- ERA-I overestimation is high during summer

6



Toujours un tem



352

264

176

88

0

2001

SR (W.m<sup>-2</sup>)

SAFRAN ISR

2002

2003

2004

2005

6

2000

2006

#### Daily time step (2001 = standard year)

- Good correlations (R<sup>2</sup> > 0.9)
- SAFRAN tends to underestimate ISR (4%)
- ERA-I tends to overestimate ISR (7%)
- ERA-I overestimation is greater in summer



## Verification of the new ECMWF ERA-Interim reanalysis: Incoming Solar Radiation (ISR) over France



Daily time step (2001 = standard year)

- Good correlations (R<sup>2</sup> > 0.9)
- SAFRAN tends to underestimate ISR (4%)
- ERA-I tends to overestimate ISR (7%)
- ERA-I overestimation is greater in summer

#### 

EGU 03-08 April 2011 HS2.8 – Verification of ERA-Interim reanalysis camille.szczypta@cnrm.meteo.fr

#### Monthly time step [1995-2006]

- Same results
- ERA-I overestimation is high during summer





## Verification of the new ECMWF ERA-Interim reanalysis: Incoming Solar Radiation (ISR) over France



Daily time step (2001 = standard year)

- Good correlations (R<sup>2</sup> > 0.9)
- SAFRAN tends to underestimate ISR (4%)
- ERA-I tends to overestimate ISR (7%)
- ERA-I overestimation is greater in summer



EGU 03-08 April 2011 HS2.8 – Verification of ERA-Interim reanalysis camille.szczypta@cnrm.meteo.fr

#### Monthly time step [1995-2006]

- Same results
- ERA-I overestimation is high during summer

6



Toujours un tem

Use of ERA-Interim forcings to generate biophysical variables: Impact on the ISBA-A-gs simulations

- ERA-Interim forcings are used to run the Land Surface Model (ISBA-A-gs)
- Permit to generate biophysical variables
  - → Leaf Area Index (LAI)
  - → Surface soil moisture (Wg)
  - → Root zone soil moisture ( $W_2$ )
- **Impact study:** simulations compared with simulations obtained with SAFRAN + use of ERA-Interim rescaled precipitation
- <u>Sensitivity study</u>: How do the different forcing variables impact the LAI and root zone soil moisture simulations ?





## Studies of the ISBA-A-gs simulations over France: Root zone $(w_2)$ , surface $(w_q)$ soil moisture and Leaf Area Index (LAI)

- Very good correlations between SAFRAN and the other simulations
- Regarding biases: (ERA-Interim, ERA-Interim rescaled and GPCC, respectively)
  - → w<sub>2</sub>: 7%, 4% and 3% bias
  - $\rightarrow$   $w_g$ : 10%, 6% and 5% bias
  - → LAI: 17%, 7% and 2% bias

| Forcing      | Scores     | W <sub>2</sub>                                                              | Wg                                    | LAI                                   |
|--------------|------------|-----------------------------------------------------------------------------|---------------------------------------|---------------------------------------|
|              | R²         | 0.95                                                                        | 0.96                                  | 0.82                                  |
| ERA-Interim  | Bias       | 0.016 m <sup>3</sup> .m <sup>-3</sup>                                       | 0.024 m <sup>3</sup> .m <sup>-3</sup> | 0.357 m <sup>2</sup> .m <sup>-2</sup> |
|              | RMSE       | 0.017 m <sup>3</sup> .m <sup>-3</sup>                                       | 0.029 m <sup>3</sup> .m <sup>-3</sup> | 0.618 m <sup>2</sup> .m <sup>-2</sup> |
| EP A_Intorim | R²         | 0.97                                                                        | 0.96                                  | 0.88                                  |
| rescaled     | Bias       | 0.010 m <sup>3</sup> .m <sup>-3</sup> 0.016 m <sup>3</sup> .m <sup>-3</sup> |                                       | 0.145 m <sup>2</sup> .m <sup>-2</sup> |
|              | RMSE       | 0.012 m <sup>3</sup> .m <sup>-3</sup>                                       | 0.023 m <sup>3</sup> .m <sup>-3</sup> | 0.431 m <sup>2</sup> .m <sup>-2</sup> |
|              | R²         | 0.98                                                                        | 0.95                                  | 0.91                                  |
| GPCC         | Bias       | 0.008 m <sup>3</sup> .m <sup>-3</sup>                                       | 0.014 m <sup>3</sup> .m <sup>-3</sup> | 0.042 m <sup>2</sup> .m <sup>-2</sup> |
|              | RMSE       | 0.010 m <sup>3</sup> .m <sup>-3</sup>                                       | 0.020 m <sup>3</sup> .m <sup>-3</sup> | 0.346 m <sup>2</sup> .m <sup>-2</sup> |
| SAFRAN       | Mean value | 0.239 m <sup>3</sup> .m <sup>-3</sup>                                       | 0.253 m <sup>3</sup> .m <sup>-3</sup> | 2.129 m <sup>2</sup> .m <sup>-2</sup> |
|              |            |                                                                             |                                       |                                       |





## Studies of the ISBA-A-gs simulations over France:

Leaf Area Index (LAI)



- LAI simulations (ISBA-A-gs) are compared with LAI satellite observations (MODIS and CYCLOPES)
- Satellites LAI tends to saturate at high values → LAI satellite values are smaller than real LAI values
- Min LAI values at Wintertime are fixed  $\rightarrow$  difficult to compare the curves during this season

| Data       | Score                                          | SAFRAN | ERA-I | ERA-I-R | GPCC |
|------------|------------------------------------------------|--------|-------|---------|------|
| Cyclones   | R²                                             | 0.52   | 0.82  | 0.76    | 0.73 |
| Cyclopes - | Bias (m <sup>2</sup> .m- <sup>2</sup> )        | 0.45   | 0.05  | 0.29    | 0.39 |
| Modie      | R²                                             | 0.55   | 0.80  | 0.75    | 0.72 |
| Modis -    | <b>Bias</b> (m <sup>2</sup> .m- <sup>2</sup> ) | 0.53   | 0.14  | 0.38    | 0.47 |





## Studies of the ISBA-A-gs simulations over France: Leaf Area Index (LAI)



• LAI simulations (ISBA-A-gs) are compared with LAI satellite observations (MODIS and CYCLOPES)

- 2002 and 2003 present different LAI cycle: slow and fast decrease for 2002 and 2003, respectively
  - → Different curves have the same general aspect
  - → Simulations describe correctly these tendencies
- Forcings have strong impacts on ISBA-A-gs simulations
- ERA-I permits to better represent beginning of LAI cycle





## **Studies of the ISBA-A-gs simulations over France:** Sensitivity study to different forcing use on the LAI



## **Studies of the ISBA-A-gs simulations over France:** Sensitivity study to different forcing use on the W<sub>2</sub>



11

## Verification of the new ECMWF ERA-Interim reanalysis: Conclusion and Perspectives

## → Conclusion

- ERA-I-R precipitation tends to be better than ERA-I precipitation
- On average for precipitation: 27% bias with ERA-I, 13% with ERA-I-R and 6% with GPCC
- On average for ISR: underestimation by 4% for SAFRAN and overestimation by 7% for ERA-I
- These biases have an impact on LAI,  $W_2$  and  $W_g$  simulations over France
- ISR tends to impact the start of the LAI cycle and precipitation has more effects on LAI senescence





## Verification of the new ECMWF ERA-Interim reanalysis: Conclusion and Perspectives

## → Conclusion

- ERA-I-R precipitation tends to be better than ERA-I precipitation
- On average for precipitation: 27% bias with ERA-I, 13% with ERA-I-R and 6% with GPCC
- On average for ISR: underestimation by 4% for SAFRAN and overestimation by 7% for ERA-I
- These biases have an impact on LAI,  $W_2$  and  $W_g$  simulations over France
- ISR tends to impact the start of the LAI cycle and precipitation has more effects on LAI senescence

## → Prospects

- Radiative transfer improvement in ISBA-A-gs to reduce the impact of ISR
- Simulations over the Ecoclimap-II area and comparison with satellite data
- Hydrological studies with runoff model, TRIP model (Oki et al., 1997) over the whole area
- Developing of a soil moisture and vegetation biomass climatology over the area



Impact study of different cases in the climate change context



## THANK YOU FOR YOUR ATTENTION

## **METEO FRANCE** Toujours un temps d'avance

Contact : camille.szczypta@cnrm.meteo.fr

