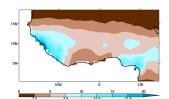


Seasonal predictions of summer precipitation over West Africa using coupled GCMs: skill of the ENSEMBLES project multi-model forecasts

Lauriane Batté and Michel Déqué (lauriane.batte@meteo.fr)

Météo-France/CNRM-GAME

Purpose of our study



Goals and purpose

- Study the predictability of precipitation over West Africa at a seasonal timescale
 - Early warnings (drought, disease...)
 - Economic applications
- Assess the FP6-ENSEMBLES multi-model seasonal forecasts
- Ensemble prediction : allows for deterministic and probabilistic assessment

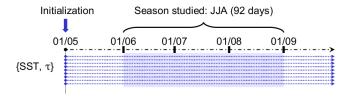
West African region

Geographical definition : latitude $\in \{0^{\circ}N, 20^{\circ}N\}$; longitude $\in \{20^{\circ}W, 15^{\circ}E\}$ Scores are calculated over a 46-year period for the June-July-August season (JJA)

JJA 1960-2005 climatology (GPCC) (mm/day)

Data

FP6-ENSEMBLES stream 2 forecasts (Weisheimer et al., 2009)


5 coupled models
(ECMWF, IFM-G, MF, UKMO, CMCC)
9 members per model

45-member multi-model ensemble (MME)

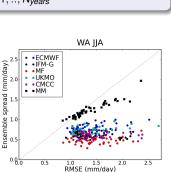
• Time period studied: 1960-2005

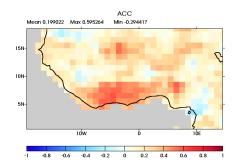
Observations: GPCC (Schneider et al., 2008)

GPCC Full Data Reanalysis version 4 dataset, monthly reanalysis of in-situ data

Outline

- Assessment of deterministic skill
 - Anomaly correlation scores
 - Spread-skill ratio
- Assessment of probabilistic skill
 - Ranked Probability Skill Score
 - Economic value
- Links with SST


Deterministic scores



Anomaly correlation coefficient

$$\mathsf{ACC} = \frac{\overline{(o_i - \overline{o})(p_i - \overline{p})}}{\sqrt{\overline{(o_i - \overline{o})^2(p_i - \overline{p})^2}}}$$

o: observations; p: predictions; $i = 1, ..., N_{vears}$

Spread VS skill (RMSE)

- Individual models are underdispersive
- Multi-model increases spread without increasing RMSE

Deterministic scores

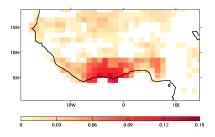
"mean-ACC" coefficient

• mACC : space and time anomaly correlation (Déqué et Royer, 1992)

$$\mathsf{mACC} = \frac{\overline{\langle (o_i - \overline{o}) \cdot (p_i - \overline{p}) \rangle}}{\sqrt{\overline{\langle (o_i - \overline{o})^2 \rangle} \cdot \overline{\langle (p_i - \overline{p})^2 \rangle}}}$$

Region	mACC MME	
West Africa	0.223	
"Sahel" (lat > 10° N)	0.160	
"Guinea" (lat < 10° N)	0.249	

- Multi-model ensemble (MME): improves most individual model scores
- Improvement due to
 - ▶ the larger ensemble size (10-member multi-model : 0.198)
 - individual model error compensation


Probabilistic formulation of an ensemble forecast

Forecasting a probabilistic event E

For each year of the 1960-2005 time period:

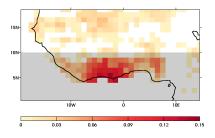
- Quantile-quantile calibration of precipitation amounts for the MME 45 members and 3 months (JJA)
- Fraction of forecast outputs predicting the event E: probability forecast $y = n_E/n$

RPSS West Africa: 0.98%

Ranked probability skill score (RPSS) (Epstein, 1969)

- Brier score for event E and JJA year i: $(v_i - o_i)^2$; $o_i = 0$ or 1
- Ranked probability score (RPS): mean of Brier scores for precipitation deciles
- Reference: RPS of climatological distribution (leave-but-one mode)
- Skill score :

$$RPSS = 1 - \frac{RPS_{MME}}{RPS_{clim}}$$


Probabilistic formulation of an ensemble forecast

Forecasting a probabilistic event E

For each year of the 1960–2005 time period :

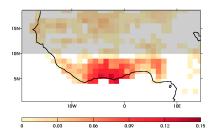
- Quantile-quantile calibration of precipitation amounts for the MME 45 members and 3 months (JJA)
- Fraction of forecast outputs predicting the event E: probability forecast $y = n_E/n$

RPSS West Africa: 0.98% RPSS "Sahel": 0.25%

Ranked probability skill score (RPSS) (Epstein, 1969)

- Brier score for event E and JJA year i: $(y_i o_i)^2$; $o_i = 0$ or 1
- Ranked probability score (RPS): mean of Brier scores for precipitation deciles
- Reference: RPS of climatological distribution (leave-but-one mode)
- Skill score :

$$RPSS = 1 - \frac{RPS_{\text{MME}}}{RPS_{\text{clim}}}$$


Probabilistic formulation of an ensemble forecast

Forecasting a probabilistic event *E*

For each year of the 1960-2005 time period:

- Quantile-quantile calibration of precipitation amounts for the MME 45 members and 3 months (JJA)
- Fraction of forecast outputs predicting the event E: probability forecast $y = n_E/n$

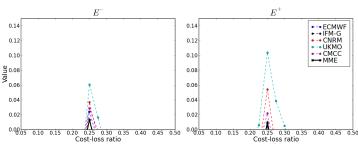
RPSS West Africa: 0.98% RPSS "Sahel": 0.25% RPSS "Guinea": 2.15%

Ranked probability skill score (RPSS) (Epstein, 1969)

- Brier score for event E and JJA year i: $(y_i o_i)^2$; $o_i = 0$ or 1
- Ranked probability score (RPS): mean of Brier scores for precipitation deciles
- Reference: RPS of climatological distribution (leave-but-one mode)
- Skill score :

$$RPSS = 1 - \frac{RPS_{\text{MME}}}{RPS_{\text{clim}}}$$

Potential economic value



Computation

- Simple "cost-loss" model (Palmer, 2002) ⇒ expenses D due to a probabilistic event E with and without using the multi-model
- Decision thresholds for probability forecasts are optimized
- ullet E+ : precipitation > 75%; E- : precipitation < 25%

	<i>E</i> nappens		
	yes	no	
E is forecast	С	С	
E isn't forecast	L	0	

$$V=rac{D_{model}-D_{
m clim}}{D_{
m perf}-D_{
m clim}}$$

Links with SST

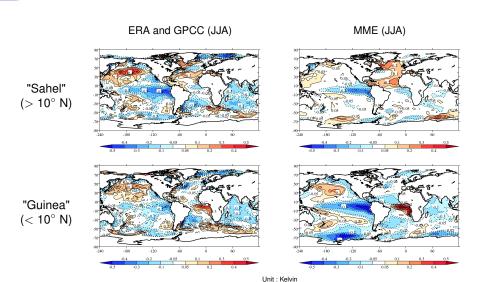
Why study links with SST?

- West African region : links with SST are different between "Guinea" and "Sahel" regions
- Aim : check if observed links between precipitation and SST are replicated by the MME

SST data

- Observations: ERA-40 data until 1989, ERA-Interim afterwards (HadISST until 1981, then NOAA-NCEP SST: see Uppala et al., 2005)
- ENSEMBLES multi-model SST: 45 member ensemble mean

Statistic used


 Covariance between precipitation standardized anomalies over the "Guinea" and "Sahel" boxes and simultaneous global grid-point SSTs

Covariance between precipitation anomalies and SSTs

Concluding remarks

General conclusions

- The ENSEMBLES 45-member multi-model is evaluated over the stream 2 1960–2005 period
- Deterministic forecasts: the MME improves the spread and ACC of individual models
- Probabilistic forecasts : positive but low scores ⇒ possible improvement using a better calibration, MOS...

Further research

- High contrast between scores over "Guinea" and "Sahel" regions although the multi-model reproduces in a similar way the observed SST-precipitation covariance patterns: other factors for predictability at this time scale?
- Scores for the ENSEMBLES MME can be compared with those for other regions and seasons in Africa (Batté and Déqué, 2011. Tellus A, 63: 283–299)

Acknowledgments

- ENSEMBLES data was produced by the European Commission FP6 Integrated Project ENSEMBLES (contract number 505539)
- GPCC is operated by DWD under the auspices of the WMO
- ERA-40 and ERA-Interim SST data were supplied by ECMWF

Thanks for your attention!

