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Background: Large-scale River Model
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Streamflow prediction is important for both water resources management and 
flood control. Varieties of hydrodynamics models have been developed for 
improving the streamflow prediction skill in large catchments.
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Problem: Scale-difference

3

However, streamflow prediction in large catchments is still difficult because the 
movement of water during flood events is regulated by much smaller-scale 
topography than the grid resolution of typical hydrodynamics models applied to 
large catchments.

Photo: Flooding in Mekong River

How can we model the complex 
hydrodynamics of large-scale flooding?

Small-scale flooding can be modeled 
by considering detailed topography.

LISFLOOD (Bates & DeRoo, 2000)



Concept of New Model
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CaMa-Flood (Catchment-based Macro-scale Floodplain model)
- Distributed river routing model using River Network Map
- Input: LSM Runoff,     Output：Water storage (Prognostic)

River discharge, Water level, Inundated area (Diagnosed)

- River and floodplain storage with sub-grid topographic parameters. 
> Explicit representation of water stage in a single grid-box (25km size)
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Concept of New Model

5

CaMa-Flood (Catchment-based Macro-scale Floodplain model)
- Distributed river routing model
- Input: LSM Runoff,     Output：Water storage (Prognostic)

Discharge, Water level, Inundated area (Diagnosed)

- River and floodplain storage with sub-grid topographic parameters.
> Explicit representation of water stage in a single grid-box (25km size)

- Discharge calculation using diffusive wave equation along river network map
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Key: How can we realistically determine the sub-grid topographic parameters?



←1km elevation
SRTM30 [NASA]

↑1km river
GDBD 
[Masutomi, 2009]

Algorithm: FLOW
(Flexible Location of Waterways method)

Input: Fine-resolution (1 km) datasets
SRTM30 DEM  & GDBD Flow Direction Map

Sub-grid Topographic Parameters
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Generated from a Spaceborne DEM and Flow Direction Map.
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Sub-grid Topographic Parameters
FLOW (Flexible Location of Waterways method)

Blue (and grey) cells:
Grid-box of Large-Scale  Model

Red pixels:
1-km flow direction map



FLOW (Flexible Location of Waterways method)
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1) Decide “outlet pixel” from GBDB pixels in 

each CaMa-Flood cell. >Channel altitude
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Sub-grid Topographic Parameters

Blue (and grey) cells:
Grid-box of Large-Scale  Model

Red pixels:
1-km flow direction map



FLOW (Flexible Location of Waterways method)
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1) Decide “outlet pixel” from GBDB pixels in 

each CaMa-Flood cell. >Channel altitude

2) Decide downstream cell by tracking 

GDBD path from outlet pixel >River network

Sub-grid Topographic Parameters



FLOW (Flexible Location of Waterways method)
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1) Decide “outlet pixel” from GBDB pixels in 

each CaMa-Flood cell. >Channel altitude

2) Decide downstream cell by tracking 

GDBD path from outlet pixel >River network

3) Calculate channel length considering 

meandering in 1-km scale >Channel length
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Sub-grid Topographic Parameters



FLOW (Flexible Location of Waterways method)
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1) Decide “outlet pixel” from GBDB pixels in 

each CaMa-Flood cell. >Channel altitude

2) Decide downstream cell by tracking 

GDBD path from outlet pixel >River network

3) Calculate channel length considering 

meandering in 1-km scale >Channel length

4) Calculate group of GDBD pixels drained 

to the river channel >Catchment Area 
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Sub-grid Topographic Parameters



FLOW (Flexible Location of Waterways method)
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1) Decide “outlet pixel” from GBDB pixels in 

each CaMa-Flood cell. >Channel altitude

2) Decide downstream cell by tracking 

GDBD path from outlet pixel >River network

3) Calculate channel length considering 

meandering in 1-km scale >Channel length

4) Calculate group of GDBD pixels drained 

to the river channel >Catchment Area 

5) CDF of elevation within a catchment is 

created. >Floodplain Elevation Profile

=> Water level and inundated area is 

diagnosed from floodplain water storage.

When 60% of catchment 
area is inundated

Water level is 12 m
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Sub-grid Topographic Parameters



FLOW (Flexible Location of Waterways method)
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> Automatically derived from 1-km datasets

Channel elevation・Downstream cell・
Channel length・Catchment area・
Floodplain elevation profile
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> Empirically estimated from runoff

River width・Bank height

]0.1,035.0max[

]0.10,00.1max[

5.0

7.0

up

up

RB

RW





Floodplain elevation profile Channel elevation

Downstream cell

Channel length
Catchment area

Sub-grid Topographic Parameters



FLOW (Flexible Location of Waterways method)
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Key: D8 .vs. Flexible River Network

Traditionally, macro-scale river models use D8 (neighboring cell) River 

Network, but it requires manual editing of flow directions.
The relation between upscaled grid-boxes 

and the original fine-resolution datasets is 

lost by the process of manual editing.

1km river →
GDBD 
[Masutomi, 2009]

Upscaling (Automatic)

Manual Editing



Floodplain Elevation Profile

FLOW (Flexible Location of Waterways method)
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Key: D8 .vs. Flexible River Network

The new model, CaMa-Flood, adopts Flexible River Network.
(i.e. The downstream grid does not have to be a neighboring cell)

- No manual editing, High resolution river networks are available

- Sub-grid topographic parameters can be 

objectively derived from the original datasets.
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CaMa-Flood (Catchment-based Macro-scale Floodplain model)

16

Simulation Setting

In order to discuss the impacts of 1) introducing floodplain storage
and 2) adapting diffusive wave equation
> Three experiments are performed:

Special Resolution: 15 arc-min (~25 km), Time step: 10 min

(Input runoff ) Spatial Resolution: 1 deg, Time step: 1 day (Linear interpolation)

Boundary condition at river mouth:  Constant sea surface elevation.

Experiment Storage Flow Routing

NoFLD River Channle Only Kinematic Wave

FLD+Kine River Channel + Floodplain Kinematic Wave

FLD+Diff River Channel + Floodplain Diffusive Wave

NoFLD

FLD+Kine

FLD+Diff
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Results (Amazon River)

@ Obidos Gauging Station

Floodplain storage plays an important role for 
regulating the fluctuation of daily river discharge
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Results (Amazon River)
Monthly averaged water surface elevation along the meinstem

(May 1993)

Smooth water surface elevation profile is simulated 
only when the diffusive wave equation is used
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Results (Amazon River)
Spatial-temporal distribution of flooded area

CaMa-Flood (FLD+Diff) [Prigent, 2007]Satellite

Flooded Area Fraction [%]

Many thanks to Dr. Prigent and Dr. Hess for providing the satellite datasets
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Results (World major rivers)
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Results (World major rivers)
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Results (World major rivers)
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Flooded Area at annual maximum

Flooding from river channels is simulated
Irrigated paddy fields and isolated lakes/wetlands are not represented



23

Summary
1) We developed the new river routing model, CaMa-Flood.

- Floodplain inundation is represented as sub-grid process.

- Diffusive wave equation is adopted as a governing equation.

2) Predictability of daily discharge in large catchments are improved.
- Floodplains play important role for regulating daily discharge

- The improvement seems robust because CaMa-Flood also shows reasonable 
results for flooded area and water surface elevation.

1. Detailed model description and results available in WRR:
-Dai YAMAZAKI et al: A physically-based description of floodplain inundation dynamics in 
a global river routing model, Water Resources Research, 2011 (published last week)

2. Poster presentation on Friday
- Yamazaki et al. (NH1.3/HS12.7 Flood risk and uncertainty)

- Getirana et al. (HS2.8 – Large scale hydrology: observations and modelling)

3. Source code of CaMa-Flood is available for research purposes
-Please contact me via e-mail (yamadai@rainbow.iis.u-tokyo.ac.jp) or, 

-Google “Dai Yamazaki” or “CaMa-Flood”

Follow Up
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