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How can we use the (CMIP3) MME 1n
probabilistic forecasting?

S

® MME samples some uncertainties in (physical)
parameterisations

® Does i1t in some way “include” reality?
® [s it too narrow?
® [s it too broad?

® What do these statements mean, and how can we
check them?
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Paradigms for interpreting the CMIP3

“ensemble of opportunity”
(IPCC Expert Meeting, Boulder 2010)

S

Truth-centred Statistically indistinguishable

“each ensemble member 1s sampled | “each of the members 1s considered
from a distribution centered around | to be ‘exchangeable’ with the other
the truth” members and with the real system”

mi = M + ¢; ~ N(M,0)

mi =T + ei ~ N(T,0) T=M + e~ N(M,0)
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Comparison of behaviours

Synthetic Statistically CMIP3
Truth-centred Indistinguishable (Knutti et al 2010)
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@ How can CMIP3 be understood within the
statistically indistinguishable paradigm?

® Our ensemble represents our uncertain beliefs about the system
® Ensemble 1s centred on our “mean beliefs” (not reality)

¢ If our uncertainty (ie ensemble range) 1s well-calibrated relative
to error in the mean, then reality and models will be a similar
distance from the mean

® Corollary: natural “counting” interpretation will be reliable
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Evaluating reliability with the
Rank Histogram (Talagrand diagram)

® For a rehiable ensemble, the truth lies equiprobably at
each position 1n the rank ordering of ensemble plus truth

e Histogram of ranks of observations should be flat

Histogram of rank
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Wide ensemble: spread
1s too large, observation
1s near the centre.
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Reliable: ensemble
represents our
uncertainty.
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Narrow ensemble:
observation 1s too often
outside ensemble range.
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@A\ Real data and models - MMEs and SMEs

(Yokohata et al submitted - see poster X115 today)

e Reliability of CMIP3 MME and several single model ensembles
MIROC, HadCM3/SM3, NCAR CAM3

® Many observations relating to radiation balance and clouds

Clear sky SW Radiation
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CMIP3-AOGCM
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Climate change at the Last Glacial Maximum ¥|

Rank Histogram of temperature anomalies 20
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CMIP3-ASGCM

MARGO vs PMIP2
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But how about climate change?
Hargreaves et al submitted - see talk, CL1.2 15:30 Tuesday
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g “But 1f the ensemble 1sn’t centred on the truth,
why 1s the multi-model mean so good?”

(1/m)2][mi-O* = (1/n)X|jmi-M]|* + [|O-M][

Average of model errors = Ensemble spread + Error of multi-model mean
(eg Stephenson and Doblas-Reyes 2000, Epstein 1969, Leith 1974)

Where the m; are the models, M=(1/n)) mi; 1s their mean and O are the obs

Follow-up: When 1s the mean better than
the best model, and why?

(Annan and Hargreaves, J Clim 1n press)

e Lambert and Boer 2001 Cli Dyn: “the mean model 1s generally the best model”

e Glecker et al 2008 JGR : “in most cases the mean and median models score
best™

e Pierce et al 2009 PNAS: “Although MM’s superiority has been found in
previous studies focusing on the mean climate, the reasons for this have not
generally been elucidated”

e Statistically Indistinguishable paradigm can provide some insights
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e Strongly depends on relative width and effective dimension

Probability

@\ Probability of a given model being better

than the mean
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¢ Doesn’t depend on shape of distribution
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Solid: Isotropic (spherical) Gaussian
Dotted: exponential eigenvalues

Dashed: 1/7i distribution

(T.Palmer, ECMWF
Newsletter #106)




~® How many effective dimensions are there?

® We’ve seen this is critical for analysing CMIP3 behaviour

® Annan and Hargreaves GRL 2010:
Ner =40 (NWP) or 5 (cross-validation)

® These imply very different interpretations of the results

o CMIP3 ensemble: Ner= 4.6, 7.5 and 3.4 (SAT, PPT, SLP)
(based on Bretherton et al EOF approach, supported by cross-validation)

¢ Finite sample gives lower Ner than infinite ensemble from
same distribution

® More models will sample more dimensions
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Test subsets of models
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Comparison with synthetic data
of known effective dimension
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Summary

® Multi-model ensemble fits the statistically
indistinguishable paradigm fairly well.

e ...Even for out of sample data (PMIP and the LGM).

® Many properties of the ensemble can be easily
explained within this framework.

e “Rehability” 1s a key concept 1n evaluating the MME.

® Provides a basis for use of the MME 1n probabilistic
prediction.

® Ensemble size 1s far from saturated
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All papers are online: Google “James Annan”, and go to his work page.
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