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Introduction

• The general reciprocal method (GRM) assumes a layered 
model and is effective when the velocity structure is 
relatively simple and refractors are gently dipping.

• Refraction tomography is capable of modeling the complex 
velocity structures.

• In contrast to time consuming and complicated numerical 
methods, neural network is found to be of potential 
applicability. Neural network ability to establish a 
relationship between an input and output space is 
considered to be appropriate for mapping seismic velocity.
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Research Purpose

To introduce a new approach to analyze 
seismic refraction data.
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Expectations

As an innovation in seismic data interpretation.
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1. General Reciprocal Method (GRM): 

- Winsism Software

2. Refraction Tomography Method:

- RayfractTM Software

- SeisOpt@2D Software

3. Neural Network

Research Method
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Research Scheme
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Refraction Tomography

• RayfractTM Software:
Inversion Algorithm;

Wavepath eikonal traveltime inversion (WET)
Forward Modeling;

Finite-difference solution to the eikonal equation (Qin et al., 1992)

• SeisOpt@2D Software:
Inversion Algorithm;

Generalized simulated annealing non linear optimization
Forward Modeling;

Finite-difference solution to the eikonal equation (Vidale, 1988)

Each of the systems contains a components for generating an initial velocity model.
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Finite-difference Solution to The Eikonal Eq.

• Expanding Wavefront Method (Qin et al., 1992) 

• Expanding Square Method (Vidale, 1988)

Sompotan, A. F. et al. Submitted to EGU General Assembly 2011, Vienna Austria, 03 - 08 April 2011



Wavepath Eikonal Traveltime inversion (WET)

1. Pick the first-arrival traveltimes from the seismograms (τrs
obs).

2. An initial slowness model is proposed and the eikonal equation is 
efficiently solved by a finite-difference method (Qin et al., 1992) to 
get τxs and τxr. The traveltime residual is computed by 

∆τ = τrs - τrs
obs

3. The source weighting function in equation 

is evaluated at all points within the medium.

4. The slowness model is updated and these steps are iteratively 
repeated until convergence.

(Schuster and Quintus-Bosz, 1993)
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Generalized simulated annealing

1. Compute travel times through an initial model {Using Finite-
difference solution to the eikonal equation (Vidale, 1988)}.

2. Determine the least-square error (E0),

3. Perturb the velocity model by adding random constant-velocity 
boxes. The boxes can have any aspect ratio and vary between 
one cell size and the entire model size.

4. Compute the new least-square error (E1),

5. Repeat steps 3 through 4 until the optimization converges.

(Pullammanappallil and Louie,1994)
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Neural Network (NN)

• The NN have the ability to map a space, which 
is called input space to another one which is 
called output space.

• NN can be trained to compute desired output 
patterns according to input patterns. The 
outstanding characteristic of this technique 
lies in its ability in computing accurate output 
patterns even for unknown input patterns.
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Neural Network (NN)

• This study is based on application of feedforward
Backpropagation NN, which contains an input, a 
hidden layer and an output (see Fig).

• Information flows forward from input to hidden 
layer and then through output (see Fig).

• Connections are only between adjacent layers 
and there is no connection between neurons in 
the same layer (see Fig).
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Neural Network: Structure
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•A neuron is a simple processing node 
which calculates the output a according 
to an input n. The value of input n for 
neuron i is the weighted sum of all 
outputs of neurons in previous layers 
(Eq. 1). Index j indicates neurons in 
previous layers.

•The value of output a is calculated 
according to a tan-sigmoidal function as 
follows (Eq. 2)

… (Eq. 1)

… (Eq. 2)



Neural Network (NN)

• As the structure and the rules of feedforward flow are 
defined, the network should undergo the training process.

• The structure and output function do not change during 
training. Training comprises the process of initializing the 
weights W (which are the only free parameters in network) 
so that the error between the computed output and the 
desired output for all samples is minimized.

• In this study, picked travel times were considered as inputs 
and the corresponding velocity and elevation as outputs.
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Neural Network: Structure

Sompotan, A. F. et al. Submitted to EGU General Assembly 2011, Vienna Austria, 03 - 08 April 2011



Neural Network: Structure
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Neural Network: Input Data

Corresponding travel times were calculated by a forward modeling scheme using 
FWM2DPSV program (by the help Matlab software). The output of the forward 
modeling is a synthetic trace. Synthetic data are picked as input.
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Neural Network: Input Data
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Neural Network: Input Data
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Neural Network: Input Data
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Neural Network: Input Data
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Neural Network: Input Data
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Neural Network: Output Target

First break data were also modeled with inversion method, where the velocity and depth of the initial model 
used as the target data. The corresponding data sets (i.e., arrival times as input and velocity and depth as 
output) were fed to neural network in order to train the networks.

..\Excel Document\Sintetik\input sintetik\2.xlsx


Neural Network: Training
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Neural Network: Training

• The performance goal for all neural network 

applications was set to 1e-005.

• The generalization performance is considered 

accurate for different models, when this goal is 

achieved.
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Comparing: Line 1

• The first layer shows a velocity of 343-449 m/s and corresponds to top 
soil. Its thickness varies from 1 m to 5 m.

• The second layer shows velocity in the range of 449 to 837 m/s (Depth 
5-10m).  It might be associated to smooth grain above the tuff layer.

• Clay Basement with a velocity of 1100-2100 m/s is located at a depth of 
about 22 m.



Comparing: Line 2

• The first layer shows a velocity of 343-449 m/s and corresponds to top 
soil. Its thickness varies from 1 m to 5 m.

• The second layer shows velocity in the range of 449 to 837 m/s (Depth 
5-10m).  It might be associated to smooth grain above the tuff layer.

• Clay Basement with a velocity of 1100-2100 m/s is located at a depth of 
about 22 m.



Conclusion

The similarity of those models shows the success 
of neural network as a new alternative in seismic 
data interpretation.
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Notes

However the results of this research indicated that
the velocity errors, which were in all cases acceptably
small were subject to increase with increasing the
depth of the layers.
Therefore, the approach for reducing the velocity
error intervals requires further research.
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