Relative Significance of the Direct Photochemical Effect

In order to infer where and how the direct photochemical effect of Lyman-alpha solar cycle 1s significant, we calculate the ratio of total changes for given chemical
constituent to the changes determined by direct photochemical effect. The figures below illustrate such estimation on example of water vapor for the summer of
solar minimum (1996) and solar maximum (2001). If the ratio lower than 2 and higher than -1 the direct photochemical effect of colar cycle exceed the variability

Influence of the 11 years solar cycle on the chemistry of ML1-region
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The 11 years solar cycle one of the most significant variations of solar radiation. The Lyman-alpha flux varies in frame of the 11 years cycle with factor ~1.5. It has 3 sy 5 2
the strongest impact on water vapor (~80 % of dissociation above 70 km). Besides water vapor Lyman-alpha radiation takes part in dissociation of molecular oxy- T E%é gl & E%;é ] .
gen (~20 % at 70-90 km), carbon dioxide (~90 % in region 65-95 km) and methane. Thus, in upper mesospher - mesopause - lower thermosphere the direct photo- . . _ . . o ‘ . g & e 2 20 I —92 s B
chemical effect is expected. By the influence on enumerated above chemicaly long-living species the 11 years solar cycle act on short-living chemically active The figures in qut .column l?elow shoW z.onally averaged absolute values for minor chemical constituents To avoid the small-scale variability we can analize seasonally aver.aged Valugs. The ﬁgures in left column 2. E%;z 200 Eéé 2 05
constituents as atomic oxygen, ozone, hydroxyl, etc. As aresult, 1t effects on the dynamics by the exothermic chemical heat and radiative cooling and heating pro- calculated at realistic dynamics and realistic Lyman-alpha flux X, at 68.75° N for the year of solar minimum belo'w. show zo.nally and summer averaged absolute values for minor chem%ce.ll constituents calculated at -0’9 i ;,f ;'* i ~0's N =
cesses. In addition to a solar cycle effect, the distributions of chemical constituents and dynamical parameters are under the influence of inter-annual and short- (1996) . The figures in right column show the absolute deviation between the years of solar minimum (1996) realistic dynamics and realistic Lyman-alpha flux <X,,> for the year of solar minimum (1996) . The figures in N ~12 N ; =12 | -
term variability as planetary waves, gravity waves, quasi-biennial oscillation (QBO), etc. With such superposition of effects it is not easy identity in the data of mea- and solar maximum (2001) of difference between realistic calculations and calculations with the same right column show the absolute deviation between the years of solar minimum (1996) and solar maximum -12 e . -12 4
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3D-model LIMA (Leibniz-Institute Middle Atmosphere) . reflect the directinfluence of Lyman-alpha 11 year cycle on photochemistry for the north summer conditions. o T T
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