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In temperate or cold climate regions a not negligible part of precipitation may be

withhold in a snow cover until the occurrence of a temperature change that triggers a

sudden water input in the ground. Northern Apennines of Italy are no exception to

this rule as demonstrated by the recent seasonal event of December 2009 in which

several shallow landslides have been triggered by a rapid snow melt in Tuscany and

Emilia-Romagna regions. In order to integrate snow precipitation within existing

statistical models for landslide prediction, a simple conceptual dynamic model for the

snow melting is proposed. The model takes into account the buildup and melting of

the snow cover in time. The final objective of the work is to increase the predictive

capability of the statistical models for landslide triggering based on rainfall input.

In literature, several snow accumulation and melting models are proposed. The

nature and possible applications of snow melting models are varied and dependent

from the purpose of use: for example in the hydrological modeling they are used for

the analysis of runoff generated by the melting of the snowpack. In the prediction

and study of avalanches some very sophisticated models are used which can

provide a detailed representation of the internal structure of the snowpack.

Essentially they are spatially distributed models based on equations of mass and

energy balance. These models, based on digital elevation data (DEM) accounting for

topography, generally require complex meteorological data: precipitation, air

temperature, wind speed and direction, humidity, downwelling shortwave radiation,

downwelling longwave radiation, cloud cover, surface pressure. Simplified

approaches as degree-day or temperature-index models show good results and it

has been shown that “only little additional improvement in model performance is

achieved when adopting an energy balance approach”.

The proposed model is built for the need of its integration with a statistical model for

landslides prediction to take into account the correct computation of the rainfall and

water resulting from snow melting. The snow melt modeling proposed is based on

two equations: the conservation of mass (input-output balance) and an empirical

equation for modeling the snow density variation. Also melting process is modeled

with empirical function based on chemical kinetics. From the conservation of mass, a

differential equation of snow cover depth, depending on density and average

temperature of the air, can be obtained. The second equation is an empirical

function for the average density variation and depends on the snow cover depth

(gravity effect) and the temperature of the air, which is variable in time. In synthesis

the SMM is divided in two modules: snow accumulation and snow melt.

The model is divided in two modules depending on whether a thresholds temperature is exceeded or not. The first module accounts

for the accumulation of solid rainfall in the snowpack and the second one for the snow melting. The main originality of the model is

the use of an empirical functional, for melting process, based on chemical kinetics depending on air temperature, rainfall amount

and depth and density of the snowpack, while other factors like wind, air humidity, atmospheric pressure and radiation are not

considered since not available in our case study. In the present form, the model depends on 13 empirical parameters including a

threshold temperature between snowfall and rainfall and the density of newly fallen snow.

The model is validated with data

(11/2003 – 4/2004) of Febbio rain

Gauge (1148 s.l.). As this

experimental data is very noise, it

is filtered with moving average. In

the next figure an example of

validation period is reported: the

model shows a good behavior in

the matching of experimental

data. Then it is applicable to

statistical modeling for landslides

forecasting: in particular the SMM

is integrated with SIGMA model

(see EGU2011-3395; NH3.7;

Poster Area Hall XY556 - 05 April

2011)

5) CONCLUSION
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Snow cover (H, ρ ) 

H = snowpack depth 

ρ = average snow density

Principle of mass 

conservation

13 parameters for modeling identification

DISCRETIZED EQUATIONS OF THE MODEL
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The output of the model H depends on independent variable x and n parameters P

Using an appropriate optimization algorithm (Flexible Simplex) we can calculate the
optimum parameters that minimize the quadratic difference between experimental data and
output of the model:
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wi = data weight, if necessary
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Experimental data were very noisy
Moving average filter

Calibration results with validated data (2009) of Doccia di Fiumalbo
rain Gauge (1371 s.l.): by ARPA Emilia-Romagna region

Simplex algorithm for modeling identification: definitions
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In the space of parameters, where 
the functional error is defined, the 
simplex is a n-dimensional polytope 
with the smallest number of vertices 
(n+1): for example in R2 the simplex 
is a triangle.

The worst point (Pmax) and the best point (Pmin) are defined as:
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The centroid of simplex is defined as its barycentre without Pmax :
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Simplex algorithm: operations
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Contraction Reduction

Once defined an initial simplex, the 
algorithm replaces the worst point
(the higher functional error) at each
iteraction. The criterion for stopping
the algorithm is based on a flatness
test of simplex: all vertices of simplex
must have the same functional error
for less then tolerance .

Example of static sensitivity analysis of the Model
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Sensibility function is evaluated as the difference between a nominal trajectory and every trajectory with 
a perturbed parameters on a time interval of interest.

To assess the optimum values of the empirical parameters, we

used an heuristic optimization algorithm (optimized flexible

simplex) to minimize the errors between outputs of the model

and experimental measures retrieved from a network of sensors
located in the study area.

Results: Statistical modeling for landslides forecasting not integrated with SMM

Results: Statistical modeling for landslides forecasting integrated with SMM

+ 18 correctly predicted
landslides

The SMM results are quite  satisfactory: the absolute mean error is 5.7 cm in calibration 

and 11.8 cm in validation, below the measurement errors of the rain gauge sensors. The 

SMM shows a good robustness and it improves the statistical model with the detection of 

36 landslides from snow melting. In addition, false alarms were reduced due to re-

distribution of water input in the ground.


