
Exploring linear and nonlinear solutions to the tidal hydraulic equations

Introduction
Analytical solutions of tidal hydraulic equations in

convergent estuaries are investigated through linear

and quasi-nonlinear models. Building on the work by

Savenije et al. (2008), some of the assumptions made

previously are addressed and neutralised, leading to a

modified quasi-nonlinear model to reproduce the

dynamics of tidal wave propagation along the estuary

axis. Different versions of the analytical solutions are

compared with numerical results for a wide range of

parameters, which provide insight into the strengths and

weaknesses of the modified quasi-nonlinear model.
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Results
⑤⑤⑤⑤ Comparison of analytical solutions against 

numerical solutions

Results
①①①① Revised set of equations

Two assumptions are relaxed:

� Tidal amplitude to depth ratio is very small.

� The damping of tidal amplitude and velocity is equal.

②②②② Influence of the non-zero tidal amplitude to depth 
ratio

.
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Method

1. We introduce a modified coefficient that accounts for

the non-zero tidal amplitude to depth ratio and

consider the difference between the damping of tidal

amplitude and velocity, leading to a new set of

equations.

2. Energy consideration in tidal damping

3. The modified solutions are compared with solutions

obtained by other linearised approaches (as reported

by Toffolon and Savenije, 2010) and to numerical

solutions of the complete St. Venant equations.

Objective
� To develop a modified quasi-nonlinear model.

� To investigate the difference  between linear and 

nonlinear models

Equations Sav. 2008 Sav. modified 
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Table 1. Comparison between original and modified set of equations

Notation:
ε = phase lag                  γ = estuary shape number
χ = friction number             µ = velocity number
λ = celerity number             δ = damping number
δU = velocity damping number δη = amplitude damping number
κ = a modified coefficient which κ=ln[(1+ζ)/(1-ζ)]/(2ζ)
ζ = tidal amplitude to depth ratio

Results
③③③③ Relation between tidal amplitude and velocity 

damping

④④④④ Comparison between linear and quasi-nonlinear 
solutions

.

Fig. 1. Main dimensionless parameters obtained with various analytical
solutions as functions of friction number χ for constant γ=3.

Fig. 2. Relation between the damping number of velocity δU and tidal 
amplitude δη with different tidal amplitude to depth for constant γ=3

The modified quasi-nonlinear model can account for
the influence of tidal amplitude to depth ratio on tidal
dynamics while the original quasi-nonlinear model and
the linear model obtain the same results with different
tidal amplitude to depth ratio.

When the second assumption is relaxed, i.e.
considering the difference between the damping of
tidal amplitude and velocity, we obtain a more accurate
solution than the solution obtained before.
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Conclusions

1. A modified quasi-nonlinear model can be obtained by

relaxing some of the effects of simplification made

earlier.

2. The major difference between quasi-nonlinear and

linear model is the damping equation.

3. Numerical simulations indicate that the two models

approach the numerical results from a different side.
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Fig. 3. Relation between the damping number of tidal amplitude and the 
estuary shape number obtained with quasi-nonlinear and linear models

From an energy perspective, we prove that the linear
model exploits a linear damping equation while the
quasi-nonlinear model makes use of a quadratic
damping equation.

� Linear damping equation:

� Quadratic damping equation:
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Fig. 4. Comparison of tidal damping computed with various analytical models 
and numerical solutions

Numerical simulations show that none of the analytical
models is fully correct for a finite amplitude wave, but
each of these approaches provide a difference
perspective on the real solution. The average of the
two comes close to the numerical result.
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Tidal amplitude damping at x=20km measured from the estuary mouth
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