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EDGE-ELEMENTS

Nodal basis functions guarantee only the continuity of the tangential component of the electric field across the interface while the vertical component of the
electric field is not necessarily continuous. This causes the normal current density to be no longer continous across the interface. Also, Because the electric field is

THE FINITE-ELEMENT APPROACH

Doing the finite-element solution of the system of equations requires the approximation of the vector and scalar potentials as follows:

SUMMARY

We deal with the three dimensional finite-element solution of the CSEM problems in a conductive medium. 3D unstructured tetrahedral meshes
are used to discretize the computational domain. Inorder to separate the galvanic and inductuve natures of the EM field, an A - @ decomposition

ELECTROMAGNETIC SOURCE

A

A'line source of electric current is chosen to be as a delta function of finite length : J — 5(y,) 5 z/) Box( - )js X (26)

of the electric field is done. After obtaining two partial differential equations, the finite-element approximation of the system of equations is done _ Nedges . . _ allowed to vary in all three orthogonal directions, the term V - (¢E) is not consistently zero within cells of uniform conductivity. To counteract these problems where .js is a scalar arlgitra!r){ fupction and Box (x') is the boxcar function; it indicates that the source current is zero over the entire domain except for a
using edge and nodal element basis functions. A= Z A;N; (7) N.i = Edge-element vectorinterpolation function edge-element basis functions are used. Constrained to be along the edge, an edge-element combines three components of the approximated field into one specificinterval, I, on which itis given a constant value.
7=1 collection. This guarantees the continuity of the tangential component, while allowing the normal component of the electric field to freely jump across the
interelement boundaries. Source - Edge interaction : y
METHODOLOGY : 4 s= [Nidae e A
nodes
T - 8 . . . The Whitney 1-form is used as the vector edge-element function. By using this (2
O = Ok, N, (8) Ng, = Nodal-element scalar interpolation function form the basis function, for example, along edge 1 (see Fig. 3) is given by: 7 The secondary system, (%, v, 2') is chosen in a way that the source line has the simplest
. =l equation. Because the tetrahedral elements are set up in the cartesian coordinate system
Assuming a time dependence of ¢*“* , Faraday’s law and Ampere’s laws of induction are written as: . Py = L{VLS — LSVLS (16) Y a transformation has to be done in order to easily calculate the source term integrals.
, The Galerkin Method : secks the solution by wighting the vector and scalar residuals of the partial differential equations N
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Upon combining equations (1) and (2), a system of equations is obtained

VxVXE+iwu(cE+J)=0 (3)

V.- J=-V.J° (4)
Decomposition of the electric field:
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Advantage 2:

component of the field to be continuous between adjacent cells sharing this edge.

In general, the edge function is given by: 1

N} = I (L;;VLiy — L VLG) (17)

2

Figure 3. Six edges are depicted for a tetrahedral element.
Edge 1is picked as an example which starts from node 1
and ends at node 2. It has no tangential component on
the blue surface S, .

V-N;=0 indicates that the field is divergence-free in a source-free region

Nnodes

- Figure 5. A line source of current shown in two
SS= | Np,V-JsdQ= Y bpjs(=)1 (30 Jure .
2 i g ]8(6‘/6) (30 cartesian and target coordinate system

NUMERICAL SOLUTION TO THE SYSTEM OF EQUATIONS

Plugging equations (19), (21), (23), (25), (28), and (30) into both equations (10) and (12) gives us a system of equations in the form of ;
Lu=F (31)

Separating the potentials into their real and imaginary parts, we end up with the following equations.

A = Magnetic Vector Potential / T —wpUs; Wik, 0 \ ( AY \ ( S \
CALCULATION OF RESIDULAS USING ELEMENTAL FUNCTIONS )
@ = Electric Scalar Potential wpUs; T;; 0 Wik, A} 0
2- Scalar Residual 1-Edge - Edge Interactions : Nedges - (32)
Decomposed Equations in the form of Partial Differential Equations: 9550 T, = Z (V x Nj) - (V x Nj) df i=1,.. Nedges (18) 0 WWipj Lok, 0 ol SS
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—wV - (6A) -V - (6Vep) =-V . J° (6) wA; . Niyfo - (6Nj) dS — iwA; N VN, - (0Nj) d§2 =1 (19) Boundary conditions are applied on the truncation boundary of the domain. Subject to the Dirichlet boundary condition, if the source is considered far enough from the
j=1 J=1 (12) truncation boundary, the following equations will be satisfied.
+(di1bia — bindi2)(dj1bje — bjidje) + (cindia — diicia)(cjidje — djicio) | A
DISCRETIZATION USING UNSTRUCTURED TETRAHEDRAL ELEMENTS i S o as i, 5[ o A x Alg, = 0 bl =
k1 koTl - \O k1 — Pk ko * \O k1 . . .. . . . .
k=1 79O k=1 7% To easily calculate the second edge - edge interaction integral we changed the coordinate system from cartesian to simplex or normalized system To code up the system of equations a Fortran code is written. The sparse structure of the coefficient matrix and the non zero elements are shown by the figure 6.
“Blocks2mesh ’, a code written by Peter Lelievre (plelievie@mun.ca), is utilized to create a three dimensional grid of unstructured tetrahedrons. N,
. . . . . . edges
This cogie makes.a block poly file that then get fed into Tetgen. Global numbers are assigned to each element and their corresponding nodes within — [ NV 3. dO U, = Z / 5N, - N dO (20) Figure 6. The sparse structure of the coefficient matrix. It is designed for a mesh of 216 cells, 80 nodes
the entire domain. QO ‘= Ja and 366 edges. This matrix consists of four main blocks . The dominant block, (1:732, 1:732), is related
to the edge-edge interactions (top left block). Also, the dimension of the matrix is
Because we mostly need the edge numbering scheme in our approach, a Fortran code is developed to convert the node numbering scheme into the L;l 2(# of Edges + # of Nodes) = 892
edge one. Also, some auxiliary subroutines are written to figure out if any edges and nodes are shared by other neighbour cells. Moreover, / oN;N; df) = 36(VJ€)2 a| Fi250Gi151—Fioj1Gi1j2—Fi1j2Gioj1+Fi11Giggo ] (21)
e v L o« e o . Q
edge-to-node, edge-to-element, element-to-edge, and other similar connectivity arrays have been coded. N O D AL ELE M ENTS AW | | |
where  Fj; = a;a;+ b;b i+ cic; 4: (0,0,1) The nonzero values of the sparse coefficent matrix on the left is stored in the (SR format for the
sake of lower memory usage. The non-symmetric system of equations will be solved using
Tetrahedrons are more suitable to model the curves of the complex-shaped volumes and irreqular geometries, for instance, jagged topography features, faults and dipping layers. Gij = / Li(z,y, 2) L (z,y,2) dQ BICGSTAB solver with an LU preconditioner.
The finite-element method uses nodal and edge basis functions to determine the approximated solution for the electric field within each element. 0
k Gij = [ L L; J| du dv d ol
Within each linear tetrahedral element, the unknown scalar function can be written as “J . (1, v, w) L (u, v, w) |I] du dv dw 1:(0,0,0) 3:(0,1,0)
Go= Vi CONCLUSIONS AND FUTURE PLANS
6 (w,y,2) = a° + b°x + cCy + d°2 (13) y 700 / 2: (10.0)
B e o Figu?e 4 The tetrahedral element in the normalized The cgde is still under developmgqt. We hope to test it on sirT\pIe Eart.h m.odels. The performance of the dis.cussed. approach Will.be compa.red with a modiﬁcgtion
Coefficients a®, bS c© and d© can be determined by enforcing the equation (13) at Gij = 10 —J coordinate system hn f\;vhlch the Lqrentz gauge condition is used. Also, the relative contributions to the electric field from the inductive and galvanic terms will be investigated in
four corners of the tetrahedron. By substituiting these coefficients into equation (13) we obtain: ierent situations.
2 - Edge - Node Interactions : Nedges
- 5N - (22)
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N, = >calar basis function edges 1 Jin, J-M., 2002. The finite element method in electromagnetics, 2nd ed., John Wiley & Sons, New York.
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Ni(z,y,2) = 6e (af + bz + gy + di2) (15) -
X 3- Node - Node Interactions : N Si,H, 2007. TetGen: A quality tetrahedral mesh generator and 3D Delauny triangulator, Weierstrass Institute for Applied Analysis and Stochastics, available from http:/tetgen.berlios.de
100 Ve = Thevolume of the tetrahedron Figure 2. An |.IIustrat|.on gf the sca.lar b§5|sfunct|on relgtgd to the noge |.Scalar. Zcony = Z VN, - 6V Ny, dQ (24)
N decreases linearly in different directions away from its initial location and vanishes — Ja
. . . 1:
Figure 1. The finite-element mesh mesh for a homogenous Earth model depicted using Kitware As the main property, the value of the interpolation function Ng (i, yi, 2;). atthe Iocat|or! Of.nOdeS.J' l andk lg:rm?traﬂ t(_) the horizontal corcggngnt of 1
Paraview 3.6.2. This mesh consists of 1233 nodes, 4432 cells and 10753 edges. is specified tobe 1if i=k andzeroifi # k . the N, , whichis depicted by N727, its vertical component, N 75, is Ziok1 = 0(=——)[brabr1 + craci1 + dradg] (25)
discontinous across the edge “il”. A%




