

Ten-Year Aerosol Optical Depth Mapping from Remotely-Sensed Data over Land Surface in China

Yong Xue^{1,2}, Hui Xu¹, and Linlu Mei¹

¹Chinese Academy of Sciences, Beijing, China ²London Metropolitan University, London, United Kingdom

Email: y.xue@londonmet.ac.uk

Web: www.tgp.ac.cn

Outline

Introduction

- Methods
- Study area and Results
- Discussion
- Conclusion

- During the last century, the Earth's surface temperature increased by 0.6 °C, reaching the highest levels in the last millennium.
- Climate is a reflection of our current atmosphere including its greenhouse gases and aerosols - it is the changes in these components which will lead to climate change.
- Aerosol affects climate by scattering and absorbing radiation (the "direct effect") and by modifying amounts and microphysical and radiative properties of clouds (the "indirect effects")

- To evaluate the effects of aerosols on climate it is necessary to estimate their spatial and temporal distributions. The only way to achieve an on-going aerosol global coverage is by satellite observation.
- Determination of aerosol optical depth from satellite remote sensing measurements is extremely complicated.
 - "Satellite retrieved Aerosol Optical Depth (AOD) Error > 0.05 (in China region can reach to 0.2).
 - Accurate climate assessment need the error with in 0.01 (Mishchenko et al., 2007)"

Methods

Xue, Y. and Cracknell, A. P., 1995, Operational Bi-Angle Approach to Retrieve the Earth Surface Albedo from AVHRR data in the Visible Band. International Journal of Remote Sensing, 16(3), 417-429.

Methods

j=1,2, respectively stand for the observation of TERRA-MOIDS and AQUA-MODIS; i=1,2,3, respectively stand for three visible spectral bands of central wavelength of 0.47 μ m, 0.55 μ m, 0.66 μ m

$$A_{j,\lambda_{i}} = \frac{(A'_{j,\lambda_{i}}b - a_{j}) + a_{j}(1 - A'_{j,\lambda_{i}})e^{(a_{j} - b)\varepsilon(0.00879\lambda_{i}^{-4.09} + \beta_{j}\lambda_{i}^{-\alpha})\sec\theta'_{j}}}{(A'_{j,\lambda_{i}}b - a_{j}) + b(1 - A'_{j,\lambda_{i}})e^{(a_{j} - b)\varepsilon(0.00879\lambda_{i}^{-4.09} + \beta_{j}\lambda_{i}^{-\alpha})\sec\theta'_{j}}}$$

Symbol	Description	
A	The Earth's surface reflectance	
A'	The Earth's system reflectance (apparent reflectance ob- served from space)	
ε	Backscattering coefficient	
θ	Solar zenith angle	
θ'	Zenith angle of the sensor	
λ	Wavelength	

$$K_{\lambda_i} = A_{1,\lambda_i} / A_{2,\lambda_i} = K_{\lambda=2.13\mu m}$$

Study Area

In China, the open burning of agriculture waste is a common practice. As a large agricultural country, China leads the world in the yield of straw and crop residues. Aerosol particles from agricultural biomass burning (ABB) in northern China have a significant impact on global air quality.

AOD Map from TERRA/MODIS data using SYNTAM algorithm at 10KM spatial resolution

Aerosol_Optical_Depth(555nm) TERRA_MISR_2008_08_07

AOD Map from TERRA/MISR data at 50KM spatial resolution

TERRA/MODIS Cloud Mask Map

AOD Map from TERRA/MODIS data with DDV algorithm at 10KM spatial resolution

Comparisons of various AOD Datasets

AOD Map from MODIS by DeepBlue Algorithm

Cloud Mask Map from MODIS

Validations with different window sizes

Validations at different wavelength

Cross Validations

CHINESE ACADEMY OF SCIENCES

Monthly Averaged AOD Datasets

0.5 0.5 0.5 y = 0.376x + 0.133 $R^2 = 0.709$ y = 0.906x + 0.057 $\mathbb{R}^2 = 0.932$ 0.4 0.4 0.4 y = 1.010x + 0.012 $R^2 = 0.738$ 0.3 WINTAN AOT 0.2 LON INTAL O. 3 0. 2 LOW WITH AND 0. 3 0.1 0.1 0.1 Validations 0 0 0 0.2 0.3 AERONET AOT 0.1 0.4 0.5 0.2 0.3 AERONET AOT 0.1 0.2 0.3 0.5 0 0 0.4 0 0.2 0.5 0.1 0.4 AERONET AOT 1 1 0.8 0.8 0.8 y = 0.488x + 0.130y = 0.522x + 0.133y = 0.525x + 0.156 $R^2 = 0.517$ $R^2 = 0.675$ $R^2 = 0.707$ 0.6 LOV WVIJUAS 0.6 0.6 LOV WVLNAS TOA MATUY 30.4 0.2 0.2 0.2 • 0 0 0 AERONET AOT 0.2 0.4 0.8 0.2 0.4 0.8 0.6 1 0 1 0 0.2 0.4 0.6 AERONET AOT 0.8 1 0 AERONET AOT 2 1.8 y = 0.108x + 0.2130.8 0.8 1.6 $R^2 = 0.110$ y = 0.645x + 0.088y = 0.503x + 0.120 $R^2 = 0.769$ 1.4 $R^2 = 0.777$ LOV IVINAS 0.6 Lov WVLNAS 1. 2 100 mv1nas 0.6 0.4 0.2 0.2 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 AERONET AOT 0 0.2 0.4 0.6 0.8 1 0 0.2 0.6 0.4 0.8 1 0 AERONET AOT AERONET AOT

Comparisons of monthly SYNTAM AOD and AERONET AOD (10km) in Asian area in August from 2002 to 2010

MODIS AOD Map (MOD04)

Consistent AOD by fusion of MISR, DDV and SYNTAM AOD Maps

中国科学院遥感应用研究所 IG APPLICATIONS

Applications

Conclusion

- Fused with the national aerosol measurement network data, the ten-year national AOT maps at 10km and 1km resolutions have been produced on the daily base. The results agreed with AERONET in situ measurement very well with averaged relative error less than 15%.
- This national climate aerosol optical thickness data will be useful for the research of regional response to the global climate change.

Aerosol Optical Depth in Arctic

AOD_10KM(0.55µm) TERRA_MODIS_NorthPole_2010_07_02

Dr. Yong Xue Email: <u>y.xue@londonmet.ac.uk</u> Web: <u>www.tgp.ac.cn</u>

