

# Application of Highresolution LiDAR-derived DEM in Landslide Volume Estimation

Chih Ming Tseng<sup>1</sup>, Ching Weei Lin<sup>2</sup>, Jin King Liu

- 1. Chang Jung Christian University
- 2. National Cheng Kung University

TAIWAN





#### Lidar Application in Taiwan (2002-2004)



**GPS** installation

LiDAR installation

Control units

#### Optech and Leica run demo flights

- Optech ALTM 2033
  - March 20~April 03, 2002
  - Beach Super King Air 350
- Leica ALS40
  - April 10~ April 16, 2002
  - Beach Super King Air 200







# Peop Fen- Er-Shan











#### MOI (Ministry of Interior) LiDAR Program in 2004-2005

- Conducted by
  - Industrial Technology Research Institute
- Point density>1 point/m²
- 4000 Km<sup>2</sup>: DEM and DSM of 1m Grid



# **Geol**ogical structures and Hazards Survey of Taipei Metropolitan Area (2005-2007)

- 2,490 Km<sup>2</sup>: DEM and DSM of 2m Grid
- Point density>1 point/m²
- Drainage analysis
- Active structure analysis
- Analysis of Volcanic Topography
- Supported by Geological Survey of Taiwan







# Fomosat-2 image taken after Typhoon Morakot (Aug., 2009)





#### National LiDAR Mapping Project (2010-2015)

- Expecting to finish a complete coverage of Taiwan
- National LiDAR Mapping is launched
  - **2010-2012 LiDAR Mapping for Morakot hazard area**
  - 2012~2015 The rest of Taiwan will be surveyed
- ☐ Optech ALTM-Orion
  - Optech ALTM-Gemini
  - Optech ALTM-Pegasus
  - Leica ALS60
  - RIEGL\_LMS-Q680i
    - 2004 Optech ALTM 3070
    - 2004 Leica ALS50





# Application of Highresolution LiDAR-derived DEM in Landslide Volume Estimation

Chih Ming Tseng<sup>1</sup>, Ching Weei Lin<sup>2</sup>, Jin King Liu

- 1. Chang Jung Christian University
- 2. National Cheng Kung University

TAIWAN







# Background

- On a regional scale, it is difficult and time consuming to measure the sediments induced by landslides for an extremely rainfall or catastrophic earthquake event.
- How much sediments induced by landslides is crucial in sediments yielding of a catchment, debris flow forecasting, and related hazards' assessment.
- Using multi-temporal LiDAR derived highresolution DEM to examine the areavolume relation of landslides become possible.



### Study area





# LIDAR-derived 2m DEM of the study area I





The error bar of elevation is within 20-30 cm.



### LiDAR-derived 2m DEM of the study area II







#### **LiDAR-derived DEM & DSM**







2010: LiDAR DSM 2m



#### Flow chart of data processing

Interpretated Typhoon Morakotinduced landslides in aerial photos

Define individual landslide boundary in DEM

Co-registration of two DEM and calculate volume of individual landslide

Regression of landslide volume and landslide area  $V=aA^b$ 

# (i)

# Ländslides recognized from aerial photos took before and after Typhoon Morakot



Aerial photo took before Typhoon Morakot Aerial photo took after Typhoon Morakot

# Landslide interpreted in study area I: 286 landslides

# Landslide interpreted in study area II: 127 landslides







#### Defined individual Landslide boundary



# DEM Variation\_ with landslide boundary





#### Defined individual Landslide boundary





#### Estimation of individual landslide volume

$$V = A \left( \sum_{i=1}^{n} h_i \right)$$

 $A = cell area(m^2)$ 

 $h_i = elevation \ difference \ (m)$ 

| 20 | 25 | 20 | 15 | 25                  |
|----|----|----|----|---------------------|
| 15 | 20 | 15 | 10 | 20<br>15<br>10<br>5 |
| 10 | 15 | 10 | 5  |                     |
| 5  | 10 | 5  | 0  |                     |
|    |    |    |    | 1 2 3 4 S1          |





## Comparison of different empirical formulas





#### Conclusions

- Using two-temporal LiDAR-derived DEM can accurately obtain the debris volume induced by landslides.
- •Empirical formula links failure area and debris volume for well cemented sandstone and shale, and slate are obtained in this study.
- •Emperical formular for different lithology will be obtained in our National LiDAR Mapping Project.



# Thanks for your attention