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Introduction
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Geomagnetic Data Assimilation

e Satellite data for magnetic field can be used to improve models

e Secular variation of magnetic field is coupled to core velocity
e Need to answer zero-oder questions:

To what extend can observations of magnetic field improve model
output for velocity? Which DA technique is most suitable (feasible)?
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Simple Model
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e Velocity: Opu + ud,u = bdyb + vo u+ W, (x,t)
e Magnetic Field: Oib + udyb = b, u + 0 + Wy(x, t)
e Boundary conditions: u(z,t) =0, if z = +1
b(z,t) = £1, if & = &1
u(x,0),b(x,0) given




Spatially Smooth- vs. Space-Time White Noise
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Noise Model
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Solutions under spatially smooth noise
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Spatially smooth noise Space-time white noise
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Random Smooth Functions

Noise Model

e Random smooth functions are easy to
generate using the trigonometric series

Wr(z,t) =Y aj(t)sin(krz) + ) be(t) cos(km/2x)
k k odd

e Very smooth noise: pick exponentially
decaying coefficients.

e Prior information on spatial distribution
of the uncertainty is easy to incorporate.

Coefficients

Physical space
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Discretized MHD equations

Spatially smooth noise results in equations:

it = My L ASH(T — MY N (v o) + N0, 3,)

U

vt = MOl L ASH T — M) N (07 vl + N0, 3)

Another coordinate transformation highlights noisy equations:
xZJrl — Gﬂiu(xza Yus T yl?) + N<O> qu)

n+1 __ n ,n .n ,n
Yu Gyu<xu7yu7xbvyb)

rpt = G (2l v 2, ) + N (0,2,
yg+1 o Gyb(x37 y37 xlT)La yl?)
Observations are collected sparsely in physical space

= Hb" + N(0, sI)

Design the filter to operate in the low dimensional,
additive-noise subspace!
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Data Assimilation: Problem Description

-

Uncertain Model
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@ Discretization

Finite dimensional,
stochastic process

~

— > { Filter } — > {State estimate}

i

Noisy
Observations




Standard Particle Filter

Continue

i

Resample to destroy
unlikely particles.

1

Assign weights
(probabilities) from
observations.

1

Move particles
forward using the
model.

[ The Catch )
s N

The number of particles
required can grow catastro-
phically with the dimensions
of the problem.
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Bickel’s Example:
- filter collapses because one
particle hogs all probability.
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Implicit Particle Filter
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Continue

N\

Compute weights,
resample if necessary

Move particles
forward using the
model and
observations.
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Idea

~

e Focus particles by using
observations when
generating the path

e Focussing effect makes
number of particles
manageable
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Implicit Sampling

Bayes’ Theorem
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Implicit Sampling

Advantages
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pick a probability:
gj ~N (07 ! )
pe(&5) o< exp(—0.5¢/ ;)
e Find a sample that carries it

p(X}jL+1’X}¢>p<bn+1|X]n+l> — eXp<_Fj<X}l+1>
Fi( X)) — ¢ = 0.5¢"¢
e Compute importance weight

0X;
w;%l = w exp(—0.5¢;) ‘a_gj

e We work particle by particle. For each one,

e Theoretical framework
offers great freedom to
construct tailor-made
filters for the problem
at hand.

e Observations are used
to generate new
positions (sharply
focussed particle beam).




Implicit Particle Filter with a Random Map

Algorithm

Geometry of the random map j

[

e Sample reference density
p=2E" &~ N(0, 1)
e Minimize F
¢ = min F

e Solve algebraic equation by random map

F(X)—¢=0.5p

X — = ALn
e Compute importance weight
w;l — w?_le_%¢pl_% P g—g‘
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Twin Experiments
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Twin Experiment )
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e Run the model

u(x,t)
b(x,t)
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Twin Experiments
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_ Twin Experiment |
4 )
e Run the model

e Collect observations

u(x,t)
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Twin Experiments
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Twin Experiments

4 )
_ Twin Experiment |
4 )
e Run the model

e Collect observations
e Run SIR filter

e Run Implicit Filter
e Compute Errors
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Filtering Results: Dense Data
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Summary

e Implicit filter requires 5-10 particles
 SIR requires significantly more particles

e SIR with 200 particles give an accuracy 4 times larger
than implicit filter with 5 particles

e Implicit filter performs well as data becomes more sparse
in space




Filtering Results: Skew Data, Example
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Poor Initial Guess
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Initial Uncertainty
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Conclusions

e Noise model allows for easy incorporation of prior
information on the spatial distribution of uncertainty

e Numerical examples indicate that sequential Monte
Carlo techniques are applicable to geomagnetic
applications

» Implicit filter yields accurate state estimates with very
few particles

e Implicit filter operates in low dimensional subspace
(dimension 50 vs. dimension 1000)

e Implicit particle filter outperforms SIR filter
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Fin

Thank you!

Please come talk to us at our poster
Implicit Filter: A Numerical Case Study of the Lorenz Attractor

Friday, 10:30 AM - 12:00 Noon
Hall X/Y, XY335
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