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Motivation “Transition between coherent and incoherent flow”
- Remediation: air sparging, SWI (CO,-H,0)

- CCS-technology (CO,-H,0)

- Bubble dynamics within the capillary fringe ©ovcar)

Viscous
Fingering

Reality on field scale:

Outline

1. Transition from coherent to incohernt flow

2. Geometry and stability of gas channels/fingers gzt |
3. Can continnum models describe the channelized flow? B, rcohoretFiow
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Gas flow pattern within 1mme-glass beads
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1. Transition between coherent and incoherent flow

Transition between
two different flow regimes

1mm-glass beads : Stable coherent (channelized) flow
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2mme-glass beads :
Unstable incoherent (bubbly) flow
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1. Transition between coherent and incoherent flow

- 0.5mm-GBS: stable coherent flow

|
i
Coherent Flow Incoherent Flow

- 2mm-GBS: unstable incoherent flow o rn
- Interesting case: 1mm-GBS at neutral curve

Grain Size [mm

Transient Drainage Phase

[=2}
(=]

Steady-state Phase
I\ 0.5mm-GBS

%)
o

Is there any explantation
at pore scale?
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Gas flow pattern within 1mme-glass beads
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2. Geometry and stability of gas channels/fingers

Competition between Capillary and Viscous Forces at Pore scale

Conceptual model (1): Cylindrical flat gas-water interface with radius R,

Bench scale - Pore scale Free energy =
excess surface free energy + internal viscous energy

Macro Channel Pore Channel

F =0-(2nR L) + 8uyQ,L*/R?
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2. Geometry and stability of gas channels/fingers

Competition between Capillary and Viscous Forces at Pore scale

Conceptual model (2): Undulating gas-water interface R(z)

L: 4 5
Free energy functional: [y / - (sz(;, )+ —

0

Variational treatment: F -> Min: 6F =0

Two different variational functions for the gas-water interface:
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Finding the Free energy minimum

- geometric shape of the gas-water interface
at different length scales L and
for different flow rates Q

Flat interface

Free Energy [MNm]
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2. Geometry and stability of gas channels/fingers

Destabilizing gravitational forces versus stabilizing viscous forces

Buoyancy forces are taken into account by the stability or mpwg g
coherence condition: For a stable vertical (pore) gas channel the Qerie = 8Hg R
gas pressure gradient is given by the hydrostatic gradient p,g.

Gas Flow Pattern
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Is there any explanation

Incoherent Flow

Trhnsition ?

at pore scale?

(1) Thermodynamical treatment - geometrical shape of the undulating
pore channel taking into account capillary and viscous forces
(2) Calculating the critical flow rate for the neck region (snap-off) yields
for the 1Imm-GBS the
—> i.e. after splitting the flow channel into two flow channels the
flow becomes unstable!
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Note there is a length scale-dependent transition of the flow regime:
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3. Can continnum models describe channelized flow?

Modeling of channelized flow at REV-scale (1)

Pore size distribution

Experiment van Genuchten Brooks-Corey
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3. Can continnum models describe channelized flow?

1mm-GBS-van Genuchten 0.5mm-GBS-van Genuchten
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Modeling of channelized Lo et v
flow at REV-scale (2)
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- Excellent agreement for flow rates, 1000 1500 2000 2500 3000
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where a dense capillary network is established

- No fitting of additional parameters!
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Reality on field scale:
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3. Can continnum models describe channelized flow?

Modeling of channelized flow at Sub-scale

Stauffer, F., Xiang-Zhao Kong, and W. Kinzelbach (2009) Advances in Water Resources 32 (2009) 1180-1186

- TOUGH2-program
- uniform distribution
- Leverett-scaling

- Cell size =5 mm
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Gas flow pattern within 1mm-glass beads
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averaging volume
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Pore size distribution
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Conclusions

- Be cautious with geometric similarity, since
Invasion percolation neglects viscous forces

= Apply continuum models (generalized

Darcy equation), if stability and coherence
condition is satisfied !

- Upscaling can lead to a scale-dependent
transition of the flow regime, i.e. to a
transition from stable coherent to unstable
Incoherent flow !

Flow Rate [mL/min]

- The experimental flow chart needs a third I -
dimension: The Length scale L Grain Size (mm]
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