Formula for Motion Threshold per Grain Size for Graded Sediments in Steady Flows

School of Marine Science and Engineering, University of Plymouth, Plymouth, United Kingdom

Introduction

- The response of grain size at a given shear stress different from what it would be if the bed were uniform
- Most sediment mobilisation models assume a single 'representative' grain size
- Those parameterisations based on a distribution of sizes are unsatisactory

Different Approaches

- ► Physical: balance of all forces
- Complicated to formulate/measure, especially mixtures
- ► Engineering: $\theta > \theta_c$ for sediment

to move

 $\blacktriangleright \theta'_{\rm ci} = \theta_{\rm cg}$

► $\mathbf{Q} = \mathbf{F} \left[\theta - \theta_{c} \right]$ = nonlinear function of excess shear stress

Summary of experimental conditions for the data used in this study

- Non-linear optimization of this simple equation is used to find the optimal form of a weighting (so-called 'hiding') function used to modify critical entrainment criteria to provide the best possible fit with data.
- 12 sets of published data from flume experiments. Total of 81 different mixed sand and gravel beds and flow conditions (grain Reynolds numbers between 1 and 10,000)

Experiment					
Published	$ heta_{ m g} imes 10^{-3}$	D_i/D_g	D_{g} (mm)	σ (mm)	mean B
Day (1980)	5.2→20.8	0.02→3.49	2.5	2.48	3.36
Day (1980)	7.07→28.3	0.03→3.03	1.84	1.51	9.62
Blom & Kleinhans (1999)	8.36→20.9	0.055→4.97	2.8→3.5	3.55→3.95	5.49
Kuhnle (1993)	4.7→53.47	0.22→8.35	0.97	1.52	0.52
Kuhnle (1993)	17.06→59.67	0.12→4.79	1.7	2.14	1.24
Kuhnle (1993)	3.92→17.34	0.081→3.21	2.6	2.45	3.65
Wilcock & McArdell (1993)) 0.53→7.86	0.017→9.12	5.1→6	7.97→13.42	6.34
Wilcock et al (2001)	4.77→20.91	$0.0058 \rightarrow 3.11$	$14.5 \rightarrow 17.1$	9.95→12	0
Wilcock et al (2001)	4.6→18.81	$0.0062 \rightarrow 3.19$	14.2→16.2	$11.2 \rightarrow 11.9$	0
Sun & Donahue (2000)	6.07→17.32	0.18→7.9	0.7→1.08	$0.55 \rightarrow 1.16$	0
Tait et al. (1992)	11.22→32.46	0.03→2.05	3.1→3.4	$1.48 \rightarrow 1.57$	0
Kuhnle (1992)	12.34→35.51	0.0079→4.26	15.72	18.96	7.91

$$\blacktriangleright \theta = \mathsf{F}\left(\frac{\mathsf{u}_*}{\mathsf{D}}\right) , \ \theta_{\mathsf{c}} = \mathsf{F}\left(\frac{\mathsf{u}_*\mathsf{D}}{\nu}\right)$$

▶ Einstein (1950): ^{θ_{c1}}/_{θ_{c2}} ≈ ^{D₂}/_{D₁}
 ▶ Define apparent threshold:

Apparent Threshold for i Grain Sizes

- ► $Q_i = F[\theta_g \theta_{ci}] P_i$ typically over-predicts fines
- Instead, threshold for fines raised and for coarse lowered

Problems with 'b'

 $\mathsf{D}_{\mathsf{g}}=\mathsf{arithmetic}$ mean; $\pmb{\sigma}=\mathsf{arithmetic}$ sorting; $\mathsf{B}=\mathsf{bimodality}$ index (0=unimodal)

Analysis reveals functional form of b

- b determined by matching modelled and measured Q_i
 This introduces an unnecessary level of abstraction
- all include arbitrary breakpoints at some D

- A New Approach
- \blacktriangleright We propose an approach based on the inferred measured particle size-distribution of the mobilized sediment, P_{mi} , rather than transport rate per fraction Q_i

- 3 known parameterizations, none universally applied. All are based on matching predicted and observed sediment transport rates
 Large degree of empiricism
- ▶ 2 do not include sorting, σ

0 0.2 0.4 0.6 0.8 u_{*}/u_{*cg} (u_{*}/u_{*cg}) (σ/D_g

Results

- Analysis reveals that motion threshold is dependent on:
 - 1. excess shear stress
 - 2. ratio of particle (arithmetic) sorting and mean grain size
- Our new formula for the mobilization of graded sediment: • $\theta'_{ci} = \theta_{cg} \left(\frac{D_i}{D} \right)^{\left(1.09 \left(\frac{u_*}{u_{*cg}} \right) \left(\frac{\sigma}{D_g} \right) \right) - 1}$
 - Based on routinely measured quantities, and easily calculable based on mean grain size
- \blacktriangleright This new relation outperforms existing formulae in 11 out of 12 data sets, and with an expected error of \pm 20%

Synthesis

A simple deterministic equation, in non-dimensional form, is proposed for fraction-specific apparent critical shear stress and mobilized

particle size distribution

It predicts that θ'_{ci} varies over more than 5 orders of magnitude for graded sediment, compared to a 1 order variation in θ_{cg} for non-graded sediment (dark solid line in Figure adjacent) and 2 orders in θ_{ci} found by previous studies (the light solid lines in Figure).

The slope of the relation between R_e and threshold condition is apparently steeper than previously thought

http://www.research.plymouth.ac.uk/tssar_waves

daniel.buscombe@plymouth.ac.uk; daniel.conley@plymouth.ac.uk