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Summary Conceptual model: from nanoscale Mineral weathering at hyphae interfaces

Soil mycorrhizal fungi act through chemical interactions at nanometer scale to dissolve Weathermg to gIOba’l scale systems — Section 17=—= * Minerals incubated in controlled microcosms with

minerals, and transport weathering products to plant symbionts through metre scale 10%s 107 m
mycelial networks at diurnal timescales [1]. Biologically-mediated soil development Ve G o . , L .
occurs at regional scale over millenia (ka) and coupling between ecological, geological SR £y P analyse sub-interface mineral composition profiles

Studied

and atmospheric systems is apparent over evolutionary (Ma) timescales [2]. Our s ' ypha T * Removal of K, Al, Mg, Fe over 72 day contact time
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hypothesis is that quantification of biologically-driven weathering reactions at e T y—rp—— rrer—— g scions  * Model fits data by diffusion-controlled hydrated

molecular scale provides a basis for new conceptual approaches to processes such as soil processes sequestration | Growth layer formation and release of ions from lattice

Column scale direction

formation and atmospheric CO, evolution that occur over much larger temporal and (mesocosms) | * Significant new dry soil weathering process
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Punus sylvestris — Paxillus tmvolutus (3-6 months)

Field to global ¥
scale | \' & Section 2 — » Single hypha on biotite identified and sectioned to

Geological time \

spatial scales. A reaction-diffusion model based

: . . . . SRelan on ion-exchange release of K* by
To test this we have applied an integrated suite of observations at scales from nanometre Biotite chips exposed to EM fungi in microscosms T

to decimetre using common minerals, fungi and physical and chemical conditions. Our Dependence on Role of plant (A) sectioned by FIB (B). =~ STEM/EDX depth profiles (inset) total K release over time

environmental species and

experiment results demonstrate that fungal hyphae-grain contact leads directly to mass \ condition: mycorrhiza type

\

loss from mineral grains over time [3,4]. Cell exudates and nanoscale cell-mineral Masstransfe// \ T Mass release to

. . . o . to pl Il i soil solution
interaction forces progressively modify mineral surfaces and alter the pore p T AN oo senle

° . . ° . . . . . . . R d H / Preferent.a| (microcosms,
microenvironment, conditioning subsequent biotic and abiotic weathering mechanisms. Q0 densty substrate

Carbon flux ek
Basalt utilisation

Crucially, these processes are directed by mycorrhiza towards minerals which yield the ionde iass
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best nutrient supply for plants [1,4]. - >

Mass transfer to Mass and energy Mass release to
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Here, we describe the development of mathematical models for key nano-scale root system transfer to hyphae > <ol solutior

. . . . v Grain scale “laws &% 10
weathering processes coupled to stochastic, agent-based simulations of hyphal growth at 10%m ’ O T T R |
. . . . . - o a : . Section 1 Section 2 Section 3 Section 4
the nm to cm scales which permit quantitative analysis of the dynamic interactions Sealing tomany phac, Whole S0, REV: Srrrmtille o o7l Tt e e Gt (o (et Sl e e
. . . . —'—I— Energy used for growth and mineral weathering ’
between plant carbon energy supply and soil mineral weathering rates, mediated by ~ Interface scale

° ° . ° . . . . . s SV A o > > Kinetics Of
mycorrhizal fungi. This conceptualisation of soil profile weathering is transferred to s R e e g =y diffusive mass
. @ iy transfer at

global scale models by aggregating soil profile descriptions at continental scale [2,5]. The SRR T ypha contact o o . _
resulting global models thus reflect processes that are transferred from both the ‘ = ~ StOCha’Stlc modelhng Of hypha'e gI'OWth. Sllb mim sca,le

nanometer and soil profile scale as constraints on global weathering and its » Weathering rates measured at single hyphae +Growth and branching rates control coverage

mathematical description. ¢ Y7 are summed together to predict rates for * Weathering flux and carbon demand strongly
Mllllmetre — metre Sca’le whole mycelium growing across a mineral nonlinear in time as colonized area increases

Figures courtesy of Megan Andrews * An agent-based model is used to translate * Total weathering flux o total carbon demand
SRS LT DT R L e hypha-scale data to weathering and carbon  + Efficiency of weathering not constant —

Influence Of EM fungi On the geOChemical caJI‘bon cycle ,- ol measurements: carbon transport and mineral weathering

TN demand as a function of time at ‘grain’ scale maximum at high growth, low branching
Identification of fungi 8 _ = M 8 . T I z * Rules for how hyphae move, weather, branch ¢ Possible mechanism for growth regulation

No EM axalate exudaton
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weathering rates at nano- | | | .
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to plant scale provides Simulated hyphal coverage

input tO Q process_b&sed | i 1120 ' 7 :_(f . " )‘ ) Carbon tranéfer VA v X ’ “Soil” solution chemistry: aftep 2160 t|meStepS Ay, ‘ » [ | " [ | -
. . m\% 840 | Y o Rl L i to root-fung Hl [{ changes in exchangeable (Simu|atin g3 months’ ngWth) s A 2 24T o Sy A Branch: 30 um Branch: 100 um Branch: 170 um
SOll ChemIStI‘y mOdlﬂe 1 BRT A% network : ion pool SRR VR B () o O Lowest yield, slowest growth

. ciq . | | | | : as a function of tip growth
integrated within the - : P&

| T | T . rate and branching frequency
- il Carbon allocation _ : : : —

GEOCARBSULF carbon to mineral cores % , N with unlimited carbon supply.
ol Jurassic Cretaceous | Palacogene Neogene 0 0[ Jurassic Cretaceous Palacogene Neogene NE ' "’:‘ 3 y
CYCIG model (T&YIOI' et al., 200 100 50 0 200 100 50 0 - Domain is 0.5 x 0.5 mm.
. . A. Time (Ma) . Time (Ma) . Measure mineral solid . .
11N I'eVleW). z phase alteration due to ReSUItlng pPedICted
Work to date suggests | | ® pmmoie A i Ll variations in model

that the evolution of — somaisi | T Model predictions compared with mineral weathering flux (blue) and
ectomycorrhizal fungi - - weathering data coupled to plant-scale carbon demand (red) over 3 R SNSRI . RN ; : |
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accounts for the CO,
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