UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

1 Introduction

Presently available reanalysis products largely lack of estimates on uncertainty. Despite this limitation, the geoscientific community makes h use of those products in terms of an uncontested reference for the mean cli state at a given location [x,y,z] and time [t].

In order to give an estimate about the uncertainty in the reanalysis at each point, it is worth comparing the reanalysis with independent observati particularly during the data-sparse years prior to 1966. This again require thorough assessment of the errors within these observations. This po presents first steps in both the uncertainty analysis of the observations as as in their comparison with the NCEP/NCAR (NNR) reanalysis.

The Comprehensive Historical Upper Air Network (CHUAN; [4]) was use extract a sample pair of homogenized radiosonde records from different sta networks. Table 1 gives a survey of the sources of errors in these observatio

2 Error Concept

$$\sigma_{obs} = \sqrt{\sigma_{instr}^2 + \sigma_{alt}^2 + \sigma_{interp}^2 + \sigma_{rad,u}^2 + \sigma_{lag,u}^2} \le \sqrt{(0.9 \text{ K})^2 + (0.15 \text{ K})^2 + (0.2 \text{ K})^2 + (0.8 \text{ K})^2} \approx 1.23 K$$

$$\sigma_{instr} = \sqrt{\sigma_{calib}^2 + \sigma_{proc}^2 + \sigma_{balloon}^2 + \sigma_{sensor}^2 + \sigma_{misc}^2}$$

The observation error σ_{obs} [x,y,z,t] can be expressed as the square root of the sum of the variances of the individual (independent) error contributions. The error terms are explained in Table 1. Note that the total error estimate of 1.23 K determined in [1] is valid for the worst case only, i.e. for the potentially highest uncorrected lag and radiation error of 0.8 K. An alternative error estimate is presented in box 3. When performing a linear correlation between two stations from different networks (box 4), the standard deviation of the residuals σ_{res} corresponds to the sum of the square roots of the observation errors of both stations, plus an error term σ_{rep} for the representativeness:

$$\sigma_{res} = \sqrt{\sigma_{obs,1}^2 + \sigma_{obs,2}^2 + \sigma_{rep}^2} = \sqrt{(2.46 \, K)^2 + \sigma_{rep}^2}$$

3 Station Selection and Metadata

Selection

- Daily mean observations from radiosonde stations Jokioinen (Finland, 23.48E, 60.82N) and Tallinn (Estonia, 24.8E, 59.42N) (Figure 1)
- Different station networks
- $\rightarrow \sigma_{obs,1}$ is independent of $\sigma_{obs,2}$
- Overlap in observations from 1957-01-01 till 1966-12-31
- Climatological and spatial distance rather small
- \rightarrow low σ_{rep} in the free atmosphere

Metadata

- Changes in sonde types are known, but specific error values were not retrieved (Table 2) \rightarrow station comparison may yield rough estimates to sonde type differences
- Standard deviation of the Finnish sonde observations with respect to other available sondes depending on day/night ascent and pressure level: $0.8 \le \sigma_{obs,FI} \le 1.2$ [5]

Jokioinen			Tallinn	
Year	Sonde type	Misc. events	Year	Sonde type
1957	Vaisala RS11	Change in observation time from 02 & 14 UCT to 00 & 12 UTC?	1957	RZ049
1959	Vaisala RS12		1958	A22
1960	Vaisala RS38	Vaisala RS38 erroneous	1960	RZ049
1966	Vaisala RS13/15			

Quality Control of Selected Historical Radiosonde Temperature Observations from 1948 – 1966

R. Wartenburger, A. Stickler, S. Brönnimann

Oeschger Centre for Climate Change Research & Geographical Institute, University of Bern Hallerstrasse 12, 3012 Bern, Switzerland

their	Uncorrected errors	Corrected errors in CHUAN		
ieavy	Uncorrected radiation, $\sigma_{rad,u}$	Radiation, σ_{rad}		
mate	Uncorrected lag, $\sigma_{lag,u}$	Lag, σ_{lag}		
grid	Interpolation (from the significant points to pressure levels), σ_{interp}	Changes in station location		
res a oster well	Instrumentation, σ_{instr} – consisting of error terms for the sensor <i>cal</i> ibration, <i>proc</i> essing procedures, <i>balloon</i> shape, temperature <i>sensor</i> , and <i>misc</i> ellaneous additional minor sources of uncertainty.	Changes in station instrumentation		
ed to	Pressure (altitude) error, σ_{alt}			
ation	Table 1. Sources of errors in radiosonde data.			

Figure 1. Location of the stations Jokioinen (blue) and Tallinn (green). The blue rectangle frames the approximate location of the NNR gridcell (see box 4).

Table 2. Metadata events and their corresponding year of occurrence. Sonde types in bold are additional sondes used in parallel to the previous models at the given year. Radiation corrections were introduced to stations within the former Soviet Union in 1962 [2,3].

[1]

RE	EFE
[1]	Brö
[2]	265 Dur
[3]	Gaf
[4]	Stic
[5]	Grie WN

ERENCES

önnimann, S., Compo, G. P., Spadin, R., Allan, R., and Adam, W., 2011. Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis, CLIM PAST, 7, 5-276.

urre, R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 53–68. ffen, D. J., 1993. Historical changes in radiosonde instruments and practices. WMO/TD-No. 541, Instruments and Observing Methods Report 50, World Meteorological ganization, 123 pp.

ckler, A., Grant, A. N., Ewen, T., Ross, T. F., Vose, R. S., Comeaux, J., Bessemoulin, P., Jylhä, K., Adam, W. K., Jeannet, P., Nagurny, A., Sterin, A. M., Allan, R., Compo, G. P., iesser, T., and Brönnimann, S., 2010. The Comprehensive Historical Upper-Air Network, Bull. Amer. Meteorol. Soc., 91, 741–751. MO OMM (Organisation Météorologique Mondiale), 1952. Comparaison Mondiale des Radiosondes. World Comparison of Radiosondes. Acte Final . Vol. III.