
( )qq
C

qK −
−

= α

α 1
)( 1

Multifractality of a high-resolution rainfall time series and assessment of the zero rain rates effect
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This study investigates the scaling and multifractal properties of a high-resolution (15-s)  rainfall time series, recorded by the means of a spectropluviometer (DBS). This dataset enables the exploration of fine scales of rain processes that

have often been neglected or underestimated in scaling/multifractal literature where the resolutions usually available are far coarser (typically, 1-h or 1-day). Therefore, the DBS dataset may provide valuable information on the

underexplored internal structure of uninterrupted rain events. Moreover, it is recalled that multifractal analysis techniques are sensitive to the proportion of zeros in the data, which may be a source of errors in multifractal characterization

of rainfall processes, where most dataset points contain zero values. Empirical and theoretical solutions are proposed in order to correct this kind of errors.

2) The scaling regimes of DBS series1) The dataset 3) Multiplicative cascades and Universal Multifractals

• Data were collected by the means of a Dual-Beam

Spectropluviometer (DBS), in Palaiseau, France

• Rain rates are estimated from arrival times, fall

speeds, diameters of raindrops

• Two years of data (summer 2008- summer 2010), 

at 15-s resolution

• Measurement threshold: 0.1 mm/h

• Catchment surface: 100 cm²
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• Scaling regimes are associated with power-law spectra, i.e. E(ω) ~ ω-β

• At small frequences (i.e. timescales > 1 week), the spectrum is almost flat

• Scaling regimes appear at smaller scales

• Sharp transition at 30-min scale ~ average rainfall event duration

• Scales dominated by interevent variability are separated from those

dominated by event internal variability

• Test of multiscaling properties � multifractal analysis (MA)

• Multiscaling quantity, indexed by the resolution: Φλ

• Multifractality arises from multiplicative cascades schemes

• Multifractality means power-law statistical moments:

• Universal Multifractal model (UM) [1]:

• K(q) is the moment scaling function (Legendre tranform of the co-

dimension function)

• Observables (rain rate) may be nonstationary and are modeled as a 

fractionnally integrated multifractal cascade (order H)

• Three parameters: α (multifractality), C1 (inhomogeneity), H

(nonstationarity)

4) Multifractal properties of DBS series

• Since DBS exhibits β > 1 at small scales, H > 0 (nonstationarity)

• Fractional integration inverted by taking the absolute gradient at finest

scale [2]

• Empirical moments estimated: 0 < q < 3; various resolutions

• Two multiscaling regimes separated by a transition at 30-min scale

• Large-scale parameters α = 0.31, C1 = 0.59, H = 0 close to literature

5) The zero rain rate problem (ZRRP)

• DBS series: 96% of zero values (true and instrumental)!

• Multifractal multiplicative cascades are not well designed to generate

large intervals/areas of zero values

• Verrier et al. [3] simulated UM maps and applied a threshold to simulate

zeros � MA of thresholded maps provides strongly biased UM 

parameters!

• Correction of the ZRRP at small scales: for DBS time series, we may

consider uninterrupted rain events only

• MA of ~ 50 DBS rain events, duration ~ 30 min � corrected

parameters: α = 1.84, C1 = 0.10, H = 0.45

6) Correction of the ZRRP at large scales (> 30 min)

• The estimation of moments should overweight nonzero values in both

resolution degradation procedure and moments computations

• The weighting procedure must guarantee the conservativity of Φ

• Weighted moments of DBS series seem to exhibit multiscaling properties

from 1-week to 30-min scales, with α = 1.22, C1 = 0.16, H = 0

a) Weigthed MA procedure

• Suppose a normalized product of a UM cascade and of an independent

monofractal support, co-dimension CF

• Moment scaling function of the product cascade:

• Derivatives of (UM) MSF are related with the estimated parameters

• Fitting KZRRP with the two-parameter form provides biased parameters:

• At large-scale (> 30 min), CF = 0.45 is estimated by box-counting. Using

full-rain parameters (section 5) α = 1.84 , C1 = 0.10 provides α’ ~ 0.3 , C1’

~ 0.55 which is in agreement with large-scale parameters (section 4).

b) Semi-theoretical formulas for estimating the bias in MA due to ZRRP
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Empirical moments of the DBS absolute increments (logarithmic coordinates)
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