Atmospheric-induced effects on oceanic wakes: Madeira Island case study
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2. Atmospheric wakes (SAR/WRF)

In the present study the Advanced Research Weather and Forecasting Model, WRF-ARW
(version 3.2), was setup with 3 one-way nested domains at 54, 18, 6 km horizontal grid
resolutions to replicate the 2008 atmospheric wake episodes, leeward of Madeira. The top of
the model is located at 50 hPa and a total of 31 vertical levels were used. It was run for the
year 2008 with ECMWF forcing at the boundary. The 18 and 6 km domains are represented in
FIG 2. Wind extracted from the 6km WRF-ARW domain was used to force the oceanic model
(ROMS).
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1. Summary
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The Madeira Island (FIG. 1) atmospheric-induced ocean wake was
Investigated by combining remote sensing and in situ data analysis with
' numerical studies. The ENVISAT and ERS Synthetic Aperture Radar
(SAR) imagery archive, for the Madeira region is dominated by wind-
Induced features, particularly during 2008, an exceptionally year in wake
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The WRF-ARW representation of the Madeira atmospheric wake was validated using 4 south
wake episodes for which SAR winds (resolution <1km,) were available. QuikSCAT 0.5°
gridded wind (www.ifremer.fr/cersat) and a blended product of QuikSCAT, ASCAT, SSM/I and
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data, also offers a unique high-resolution view of the leeward wind wake, Invisible to
QuikSCAT. Furthermore, it also shows that wind speed and direction are reproduced well in
WRF, depicting the atmospheric island-induced wake signatures. Leeward wind profiles,
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winds from WRF-ARW (Weather Research and Forecast model), routinely
show oceanic eddies detaching from the island.

This study considers the effect of the wind spatial and temporal variability extracted at 32.5° N (FIG 3, right), confirm that WRF and SAR have similar wind shear 7,/ " V| o
in the generation of oceanic wakes. The comparison of SAR derived winds signatures, although WRF seems to slightly underestimate the width of the wake. ] ! T e o = =
with other available datasets is also considered as a cross-validation i | g ¥
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1 3.2 Results Figure 3: Wind speed (color) in m/s and wind streamlines considering, by column for from left to right: SAR, WRF, QuikSCAT and
3.2.1 Spatial variability of the wind L QU|kSCAT+AS(.3AT+SS.M/I+ECMVYF blended product qnd; from Fop to botom : 29/04/2008, 17/07/2008, 02/08/2008 and 03/10/2008: Last plots on the right ‘
represent the wind section at 32.5°N (leeward of Madeira) associated to each date. Except for SAR, other datasets are shown as daily means.
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3.1 Model Setting each numerical experiment. A control experiment using o =% - g’

QUuIkSCAT derived wind (FIG. 4a) showed very little influence : e - _.....ir

on the oceanic vorticity field. In contrast, daily WRF-ARW wind,

showed the presence of cyclonic and anticyclonic oceanic

eddies, in the lee of Madeira (FIG. 4Db).

62107 Mean Suacs Pecilive and egslive Marsty A succession of cyclonic and anticyclonic eddies found on the

N 29" of April, showed the presence of a well developed Von

al M W/M W Karman Vortex Street in the ocean circulation model. This
PRI St MWW«H suggests that for the wind curl to have an effect in the

generation of (modelled) oceanic vorticity, it needs to be fairly

The Regional Oceanic Modeling System,
ROMS (Shchepetkin and McWilliams,
2005). has been used to study wind-
Induced circulation, leeward of Madeira
Island. ROMS was initialised and forced
at the oceanic boundaries, by
temperature and  salinity  profiles
extracted from the World Ocean Atlas

4. Conclusions

=>2008 time-series (FIG. 5) of spatially-averaged positive (cyclonic) and negative (anti-
cyclonic) surface oceanic vorticity, were presented in FIG. 4. Most sea surface vorticity, in our
numerical study was generated during summer months. WRF-ARW daily forcing generated
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climatology (Locarnini et al., 2006 and % SN\ .. :@J \&\SI 5 W R @} & DS = 2r constgnt _during a day.- 2-hourly va_lriable- V_Vinds were not so more surface vorticity in ROMS than 2-hourly and QSCAT winds.
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also considered wind from different| D =0l 7 10 e/ A | ] eddies in the lee of Madeira. The increase in the oceanic Madeira, is the local wind stress.
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and iii) a last using 2-hourly WRF-ARW | =y e e e, W e e remains higher than in the control-run, it is slightly reduced

wind. The WRF-ARW model set-up is compared to the daily-mean wind experiment. Suggesting a

i in ion 2. Figure 4 : ROMS oceanic surface vorticity (s" ) considering: (a) QuikSCAT wind forcing; (b) WRF daily wind forcing and; (c) WRF 2- . : . . ,
© s 0 RLRERY hourly forcing. Several 2008 south-wake episodes were considered. By column, from left to right: 29/04/2008, 17/07/2008, 02/08/2008 and threShpId ] tempora.'l wind - variability beyond .Wh.IC.h the
03/10/2008 (daily average). formation of eddies in the lee of Madeira are inhibited. .

Corroborating recent results obtained in a 2D numerical study
(Caldeira et all, EGU2011-7492-1).
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