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In this study we explore the effects of quantization in temporal precipitation 
measurements on the most widely used scaling estimators. Specifically we 
investigate those effects by comparing two of the most common precipitation 
gauges and we generalize our finding by numerical (Monte Carlo) quantification 
of the bias introduced by the instrumental depth precision. 

Data 

The data used in this study are records from the automatic weather stations 
network (SwissMetNet) operated by MeteoSwiss. Those stations are equipped 
with rain gauges with a heated tipping bucket mechanism. The depth precision is 
0.1mm and time resolution 10min. Also precipitation data from a weighing gauge 
(MPS) placed in the same location (Zermatt) as one of the tipping-bucket gauges  
will be used for the comparison.   

Data Analysis 

The data analysis consists of the evaluation of the performance of the most 
widely used scaling estimators in hydrology. Since the last decades the concept of 
simple and multi scaling processes has attracted a lot of attention in hydrological 
research, we will focus on estimators that describe these processes. The 
estimators are: 
• Multifractal process descriptors. We adopt the notation of Over and Gupta 

(1994) and especially the intermittent beta lognormal model 
• Hurst exponent (Koutsoyiannis, 2003) 
• Power Spectrum analysis using periodogram and wavelet decomposition of 

the precipitation time series (Molini et al., 2009) 
Our analysis is divided into two different time regimes. First the time scales from 
minute to hour will be explored. At this scale we see the effect of the low 
precision of the tipping bucket gauge. Then the scales from hour to day are 
explored where the effect of heating evaporation losses becomes dominant 
especially during winter.   

The weighing gauge has a depth 
precision of 0.001mm and a time 
resolution of 1min. Also it does not 
suffer from snow melting water losses 
that affect the tipping bucket rain 
gauges, especially in low intensity 
winter events. 

The collected data were examined on a seasonal basis. The weighing gauge 
records were not continuous so we examine them for five different time periods 
  
a) Spring 09 ~ 22 January-02 April 
b) Summer 09 ~ August 
c) Autumn 09 ~ September – October - November   
d) Winter  10  ~ December (09) – January – February 
e) Spring  10  ~ March – April - May 

Multifractal scaling spectra (minute ~ hour) 

In this scaling regime, the effect of low depth precision becomes apparent on the 
moment scaling for orders of moments less than 1 (i.e. sensitive to low values) 
and can lead to an underestimation of the dimension of the support of about 
50% for low intensity winter events 

The quantization effects become 
strong in the moment scaling 
especially for 𝑞

 
 0 (dimension of 

the support). Also a scaling 
transition regime cannot be 
identified by the tipping bucket 
measurements.  

Multifractal scaling spectra (hour ~ day) 

ANETZ MPS Simulated tipping bucket ANETZ MPS Simulated tipping bucket ANETZ MPS Simulated tipping bucket ANETZ MPS Simulated tipping bucket ANETZ MPS Simulated tipping bucket

β 0.388 0.093 0.322 0.482 0.276 0.500 0.319 0.109 0.298 0.405 0.127 0.368 0.422 0.135 0.405

σ 2 0.000 0.024 0.000 0.000 0.000 0.000 0.000 0.075 0.000 0.000 0.111 0.000 0.000 0.036 0.000

Hurst exponent 0.909 0.950 0.918 0.854 0.879 0.828 0.942 0.933 0.929 0.853 0.906 0.853 0.930 0.932 0.907

Hurst exponent unbiased 0.944 0.979 0.958 0.897 0.941 0.858 0.948 0.917 0.973 0.883 0.984 0.902 0.985 0.928 0.972

wavelet spectral slope -1.405 -1.673 -1.514 -1.387 -1.123 -1.296 -1.803 -1.305 -1.564 -1.623 -1.551 -1.489 -2.067 -1.789 -1.922

ANETZ MPS Simulated tipping bucket ANETZ MPS Simulated tipping bucket ANETZ MPS Simulated tipping bucket ANETZ MPS Simulated tipping bucket ANETZ MPS Simulated tipping bucket

β 0.518 0.574 0.560 0.640 0.664 0.677 0.613 0.626 0.605 0.691 0.664 0.675 0.672 0.706 0.704

σ 2 0.000 0.000 0.000 0.193 0.180 0.157 0.000 0.000 0.000 0.000 0.029 0.000 0.149 0.149 0.121

Hurst exponent 0.793 0.797 0.800 0.606 0.607 0.600 0.777 0.760 0.768 0.697 0.692 0.687 0.618 0.602 0.613

Hurst exponent unbiased 0.867 0.877 0.879 0.682 0.664 0.689 0.853 0.838 0.842 0.751 0.757 0.745 0.710 0.694 0.701

wavelet spectral slope -0.960 -0.991 -0.987 -0.488 -0.468 -0.463 -0.940 -0.905 -0.901 -0.666 -0.676 -0.673 -0.642 -0.616 -0.610

Spring 2009 Summer 2009 Autumn 2009 Winter 2010 Spring 2010

(1hour - 1 day)

Spring 2009 Summer 2009 Autumn 2009 Winter 2010 Spring 2010

( minute - 1 hour)

Numerical quantification of the bias 

In the scaling regime of one hour 
to one day, the effect of 
quantization tend to disappear 
and the total water amount loses 
does not seem to have any strong 
effect on the estimation 
procedure  

Hurst exponent estimation 

The Hurst exponent calculation 
through the scaling of the 
unbiased estimation of the 
standard deviation seems to be 
robust at any scale of 
hydrological interest 

Mean relative bias of β estimate 

From the calculation of the power spectra using classic periodogram analysis 
(upper) and wavelet analysis (lower) it appears that no significant bias is 
introduced due to low depth precision but coarse resolution data sets are not 
able to identify strong scaling breaks (~10 min). This fact can strongly affect 
disaggregating techniques especially in urban hydrology that deals with time 
scales of that magnitude. 

A summary of the statistics 

Conclusions 

In order to quantify the effects of the quantization due to low measurement 
precision and also due to the errors introduced by the tipping bucket mechanism 
we set up a numerical Monte Carlo simulation procedure. 
1. Sampling realizations of “precipitation” series using a stochastic model 
2. Quantizing the results by reproducing the tipping bucket procedure 
3. Calculating among a large set of realization (1000 in our case) the mean 

value of the relative bias (simulated – estimated on the quantized series) 
The stochastic model we use belongs to the class of the intermittent random 
multiplicative cascades. We use the intermittent beta lognormal version of the 
model (Over and Gupta., 1994) since it is the one that can reproduce efficiently 
the observed precipitation series structure with the most parsimonious 
parameterization that lead to few free parameters on the Monte Carlo procedure. 
The beta lognormal model simulates multifractal random measures with a 
specific moment scaling spectrum and an atom at zero. The simulation scheme is 
constructed as follows. The mass at each level of the cascade development n is 
 
 
where W is the cascade generator  that consists of two parts, the  intermittency 
part and the log-normally distributed part. The distribution of the generator is 
given by the following equations 
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The Monte Carlo simulation procedure was 
performed for quantization levels indicated 
by the data analysis performed on the 
ANETZ precipitation records. As 
quantization level we define the quantity: 
 

𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 =
𝑑𝑒𝑝𝑡ℎ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑚𝑒𝑎𝑛 𝑑𝑒𝑝𝑡ℎ
(%) 

Where mean depth is the average 
seasonally recorded depth per 10 minutes 

Also the parameter space that the model simulation took place was indicated by 
the values estimated from the data analysis of the record ANETZ network and 
also the rain gauge network of daily observations in Switzerland. 

Spectral analysis 

Mean relative bias of σ2 estimate 

Mean relative bias of Hurst exponent estimate 

Mean relative bias  of spectral slope estimate 

• Measurement precision can have a strong effect on the scaling estimators 
• The lag of the tip and the low depth precision effects appear to have the most 

dominant influence 
• The total losses due to evaporation does not have significant influence on the 

scaling estimators 
• Multifractal estimates that depend on a wide range of moments across scales 

suffer the most from measurement precision problems 
•  Scaling characteristics such as scaling transition regimes can remain 

unidentified by low precision measurements  
• Special care should be taken when different scaling stochastic models are 

calibrated against data in order to take into account probable biases and large 
uncertainties due to the measurement. 
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where 

• Koutsoyiannis, D. (2003). Climate change, the Hurst phenomenon, and hydrological statistics/Changement climatique, phénomène de Hurst et 

statistiques hydrologiques. Hydrological Sciences Journal, (4) 

• Molini, A., Katul, G. G., & Porporato, A. (2009). Revisiting rainfall clustering and intermittency across different climatic regimes. Water Resources 

Research, 45(11) 

• Over, T. M., & Gupta, V. K. (1994). Statistical Analysis of Mesoscale Rainfall: Dependence of a Random Cascade Generator on Large-Scale 

Forcing. Journal of Applied Meteorology, 33(12), 1526-1542.  
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*Note that unbounded least square fit on the estimated scaling spectrum can lead to non feasible estimates of σ2<0 
** Periodogram log-slope estimation is not shown due to large uncertainty on the log-log power spectrum plot  
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