ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Abstract

In this study we explore the effects of quantization in temporal precipitation measurements on the most widely used scaling estimators. Specifically we investigate those effects by comparing two of the most common precipitation gauges and we generalize our finding by numerical (Monte Carlo) quantification of the bias introduced by the instrumental depth precision.

Data

The data used in this study are records from the automatic weather stations network (SwissMetNet) operated by MeteoSwiss. Those stations are equipped with rain gauges with a heated tipping bucket mechanism. The depth precision is o.1mm and time resolution 10min. Also precipitation data from a weighing gauge (MPS) placed in the same location (Zermatt) as one of the tipping-bucket gauges will be used for the comparison.

The weighing gauge has a depth precision of 0.001mm and a time resolution of 1min. Also it does not suffer from snow melting water losses that affect the tipping bucket rain gauges, especially in low intensity winter events.

The collected data were examined on a seasonal basis. The weighing gauge records were not continuous so we examine them for five different time periods

- a) Spring 09 ~ 22 January-02 April
- b) Summer og ~ August
- Autumn 09 ~ September October November
- d) Winter 10 ~ December (09) January February
- e) Spring 10 ~ March April May

Data Analysis

The data analysis consists of the evaluation of the performance of the most widely used scaling estimators in hydrology. Since the last decades the concept of simple and multi scaling processes has attracted a lot of attention in hydrological research, we will focus on estimators that describe these processes. The estimators are:

- Multifractal process descriptors. We adopt the notation of Over and Gupta
- (1994) and especially the intermittent beta lognormal model
- Hurst exponent (Koutsoyiannis, 2003)

CC

 (\mathbf{i})

Power Spectrum analysis using periodogram and wavelet decomposition of the precipitation time series (Molini et al., 2009)

Our analysis is divided into two different time regimes. First the time scales from minute to hour will be explored. At this scale we see the effect of the low precision of the tipping bucket gauge. Then the scales from hour to day are explored where the effect of heating evaporation losses becomes dominant especially during winter.

In this scaling regime, the effect of low depth precision becomes apparent on the moment scaling for orders of moments less than 1 (i.e. sensitive to low values) and can lead to an underestimation of the dimension of the support of about 50% for low intensity winter events

Quantification of the effects of measurement precision on scaling estimators Athanasios Paschalis, Peter Molnar and Paolo Burlando Institute of Environmental Engineering, ETH Zurich, Switzerland

introduced due to low depth precision but coarse resolution data sets are not able to identify strong scaling breaks (~10 min). This fact can strongly affect disaggregating techniques especially in urban hydrology that deals with time scales of that magnitude.

(minute - 1 hour)															
	Spring 2009			Summer 2009			Autumn 2009			Winter 2010			Spring 2010		
	ANETZ	MPS	Simulated tipping bucket	ANETZ	MPS	Simulated tipping bucket	ANETZ	MPS	Simulated tipping bucket	ANETZ	MPS	Simulated tipping bucket	ANETZ	MPS	Simulated tipping bucket
	0.388	0.093	0.322	0.482	0.276	0.500	0.319	0.109	0.298	0.405	0.127	0.368	0.422	0.135	0.405
	0.000	0.024	0.000	0.000	0.000	0.000	0.000	0.075	0.000	0.000	0.111	0.000	0.000	0.036	0.000
ent	0.909	0.950	0.918	0.854	0.879	0.828	0.942	0.933	0.929	0.853	0.906	0.853	0.930	0.932	0.907
ent unbiased	0.944	0.979	0.958	0.897	0.941	0.858	0.948	0.917	0.973	0.883	0.984	0.902	0.985	0.928	0.972
tral slope	-1.405	-1.673	-1.514	-1.387	-1.123	-1.296	-1.803	-1.305	-1.564	-1.623	-1.551	-1.489	-2.067	-1.789	-1.922
								(1)	nour - 1 day)						
										Winter 2010			Spring 2010		
		ç	Spring 2009		Su	ummer 2009		ŀ	Autumn 2009		۷	Vinter 2010			Spring 2010
	ANETZ	MPS	Spring 2009 Simulated tipping bucket	ANETZ	Su MPS	ummer 2009 Simulated tipping bucket	ANETZ	A MPS	Autumn 2009 Simulated tipping bucket	ANETZ	V MPS	Vinter 2010 Simulated tipping bucket	ANETZ	MPS	Spring 2010 Simulated tipping bucket
	ANETZ 0.518	MPS 0.574	Spring 2009 Simulated tipping bucket 0.560	ANETZ 0.640	Su MPS 0.664	ummer 2009 Simulated tipping bucket 0.677	ANETZ 0.613	/ MPS 0.626	Autumn 2009 Simulated tipping bucket 0.605	ANETZ 0.691	V MPS 0.664	Vinter 2010 Simulated tipping bucket 0.675	ANETZ 0.672	MPS 0.706	Spring 2010 Simulated tipping bucket 0.704
	ANETZ 0.518 0.000	MPS 0.574 0.000	Spring 2009 Simulated tipping bucket 0.560 0.000	ANETZ 0.640 0.193	St MPS 0.664 0.180	ummer 2009 Simulated tipping bucket 0.677 0.157	ANETZ 0.613 0.000	MPS 0.626 0.000	Autumn 2009 Simulated tipping bucket 0.605 0.000	ANETZ 0.691 0.000	V MPS 0.664 0.029	Vinter 2010 Simulated tipping bucket 0.675 0.000	ANETZ 0.672 0.149	MPS 0.706 0.149	Spring 2010 Simulated tipping bucket 0.704 0.121
ent	ANETZ 0.518 0.000 0.793	MPS 0.574 0.000 0.797	Spring 2009 Simulated tipping bucket 0.560 0.000 0.800	ANETZ 0.640 0.193 0.606	St MPS 0.664 0.180 0.607	ummer 2009 Simulated tipping bucket 0.677 0.157 0.600	ANETZ 0.613 0.000 0.777	MPS 0.626 0.000 0.760	Autumn 2009 Simulated tipping bucket 0.605 0.000 0.768	ANETZ 0.691 0.000 0.697	V MPS 0.664 0.029 0.692	Vinter 2010 Simulated tipping bucket 0.675 0.000 0.687	ANETZ 0.672 0.149 0.618	MPS 0.706 0.149 0.602	Spring 2010 Simulated tipping bucket 0.704 0.121 0.613
ent ent unbiased	ANETZ 0.518 0.000 0.793 0.867	MPS 0.574 0.000 0.797 0.877	Spring 2009 Simulated tipping bucket 0.560 0.000 0.800 0.879	ANETZ 0.640 0.193 0.606 0.682	St MPS 0.664 0.180 0.607 0.664	Simulated tipping bucket 0.677 0.157 0.600 0.689	ANETZ 0.613 0.000 0.777 0.853	MPS 0.626 0.000 0.760 0.838	Autumn 2009 Simulated tipping bucket 0.605 0.000 0.768 0.842	ANETZ 0.691 0.000 0.697 0.751	V MPS 0.664 0.029 0.692 0.757	Vinter 2010 Simulated tipping bucket 0.675 0.000 0.687 0.745	ANETZ 0.672 0.149 0.618 0.710	MPS 0.706 0.149 0.602 0.694	Spring 2010 Simulated tipping bucket 0.704 0.121 0.613 0.701
ent ent unbiased tral slope	ANETZ 0.518 0.000 0.793 0.867 -0.960	MPS 0.574 0.000 0.797 0.877 -0.991	Spring 2009 Simulated tipping bucket 0.560 0.000 0.800 0.879 -0.987	ANETZ 0.640 0.193 0.606 0.682 -0.488	St MPS 0.664 0.180 0.607 0.664 -0.468	Simulated tipping bucket 0.677 0.157 0.600 0.689 -0.463	ANETZ 0.613 0.000 0.777 0.853 -0.940	MPS 0.626 0.000 0.760 0.838 -0.905	Autumn 2009 Simulated tipping bucket 0.605 0.000 0.768 0.842 -0.901	ANETZ 0.691 0.000 0.697 0.751 -0.666	V MPS 0.664 0.029 0.692 0.757 -0.676	Vinter 2010 Simulated tipping bucket 0.675 0.000 0.687 0.745 -0.673	ANETZ 0.672 0.149 0.618 0.710 -0.642	MPS 0.706 0.149 0.602 0.694 -0.616	Spring 2010 Simulated tipping bucket 0.704 0.121 0.613 0.701 -0.610

$$\mu_{n}(\Delta_{n}^{i}) = \mu_{0}(J)b^{-n}\left(\prod_{k=1}^{n}W_{k}^{i}\right)$$

$$(W=0)=1-b^{-\beta}, P(W=b^{\beta}Y)=b^{-\beta}, Y=b^{\gamma+\sigma}$$

$$X \sim N(0,1)$$

quantization level we define the quantity:

<u> (%) </u> [°]seasonally recorded depth per 10 minutes

Over, T. M., & Gupta, V. K. (1994). Statistical Analysis of Mesoscale Rainfall: Dependence of a Random Cascade Generator on Large-Scale Forcing. Journal of Applied Meteorology, 33(12), 1526-1542.