

Introduction

 Increased tropospheric background concentration of ozone have vegetation such as reduced biomass production causing reduced reduced crop yield can be expected.

•Estimation of the total stomatal dose of ozone to the vegetation ozone from the ambient air into the vegetation.

 In this study, the stomatal flux estimated by the dry deposition so Research and Forecasting model with Chemistry) is compared to e Castelportziano, Italy, during the summer of 2007.

Model and methodology

•WRF-Chem V3.2 (Weather Research and Forecasting model with chemistry) (Grell et al., 2005) •RADM2 chemistry scheme •The modelled stomatal flux is compared to the flux derived from eddy covariance data from Castelportziano outside Rome, Italy (Gerosa et al. 2009) for the daytime hours. •To account for the evaporative power of the atmosphere on the stomatal conductance, two different water vapor pressure deficit (VPD) functions were used: $fVPD = \frac{(1-0.1)(c-VPD)}{c-d} + 0.1$ If $\sum VPD \ge \sum VPD_{crit}$ then $g_{st,hour n+1} \le g_{st,hour n}$

•The VPD effect was only included in an off-line mode, but will later be included in on-line calculations

26/06 27/06

Figure 2: Surface conductances as modelled in WRF

for the period June 23-28 2007

Dry deposition in WRF-Chem Aerodynamic resistance ra Quasilaminar sublayer resistance rb -----Vegetation

•Dry deposition scheme for ozone based on Wesely (1989) • "Big leaf" approach

- •Flux: $F = v_d * C$
- Deposition velocity

•Stomatal conductance is regulated by surface temperature and shortwave radiation:

Summary and conclusions

Ground'

Figure 1: Resistance network from Wesel

•The second of the two simulated periods was characterized by a lower measured stomatal flux, caused by overall dryer conditions at the measuring site, reducing the rate of evapotranspiration substantially, and thereby also uptake of ozone

•Introducing the reduction in ozone uptake due to VPD improved the model results in the second period in comparison with the measurements.

A model study of stomatal uptake of ozone in a costal Mediterranean maquis ecosystem

Authors: Rydsaa JH¹, Stordal F¹, Gerosa G² and Finco A²

¹Department of Geosciences, University of Oslo, Oslo, Norway ²Dipartemento di Matematica e Fisica, Università Cattolica del S.C., Brescia, Italy

		Mean O ₃ at the s
reached values of which adverse effects on biodiversity and economic loss due to		44°N 42°N 40°N
requires calculation of the stomatal flux of		38°N 8°E 10°E 12°E 14 Degree
cheme within the WRF- Chem model(Weather eddy covariance data gathered in		figure 3: Surface of daylit hours (6-17 U period. Mean mea flux (daylit hou
		5.24nmol
mulation periods	2007, May 21-26 and June 23-28	15
orizontal resolution	Nested 27x27km 9x9km 3x3km 1x1 km	() m 10
ertical resolution	27 layers in all domains	
ntropogenic emissions	TNO/EMEP emissions dataset (www.tno.nl/emissions) RETRO (http://retro.enes.org)	Ê 5-111 0-11 21/05
ogenic emissions	MEGAN v2.04 (Guenther et al., 2006)	Figure 4: Mea
itial and boundary onditions	Meteorology: ECMWF- IFS Chemistry: Oslo CTM2	

$$y: \quad v_d = \frac{1}{r_a + r_b + r_b}$$

 $r_{st} = r_i \left\{ 1 + \left[200 \frac{1}{G+0.1} \right]^2 \right\} \left\{ 400 \frac{1}{T_c (40 - T_c)} \right\}$

Physics 6, 3181-3210

•Grell, G. A., S. E. Peckham, et al. (2005). "Fully coupled "online" chemistry within the WRF model." Atmospheric Environment 39(37): 6957-6975.

•Wesely, M. L. (1989). "Parameterization of surface resistances to gaseous dry deposition in regionalscale numerical-models." Atmospheric Environment 23(6): 1293-1304.

Johanne H. Rydsaa: j.h.rydsaa@geo.uio.no Frode Stordal: frode.stordal@geo.uio.no Giacomo Gerosa: giacomo.gerosa@unicatt.it Angelo Finco: angelo.finco@unicatt.it