

Der Wissenschaftsfonds.

Ray-traced tropospheric slant delays from numerical weather models in VLBI analysis

Vahab Nafisi ^(1,2) Matthias Madzak ⁽¹⁾ Andrea Pany ⁽¹⁾ Johannes Böhm ⁽¹⁾ Harald Schuh ⁽¹⁾ Alireza A. Ardalan ⁽²⁾

(1) Institute of Geodesy and Geophysics, Vienna University of Technology, Austria

(2) Department of Surveying and Geomatics Engineering, College of Engineering, University of Tehran, Iran

EGU General Assembly 2011

Vienna, 5 April 2011

• A ray-tracing package and computational aspects

• CONT08 processing results

0. Introduction

1. Mathematical model for Ray-tracing systems

• Eikonal equation

$$\left[\nabla L(\vec{r})\right]^2 = n(\vec{r})^2$$

(1)

L: optical path length, \vec{r} : vector of positions,

 \mathcal{N} : refractive index, ∇ : gradient operator w.r.t positions

Refractivity, as a function of meteorological parameters

$$N = k_1 \frac{p_d}{T} + k_2 \frac{e}{T} + k_3 \frac{e}{T^2} \longrightarrow n = 1 + N \times 10^{-6}$$

• Partial derivatives of the refractivity in spherical coordinate system

$$\frac{\partial n}{\partial \lambda} \qquad \frac{\partial n}{\partial \theta} \qquad \frac{\partial n}{\partial r}$$

• Special case : 2D Ray-tracing

- Vertical interpolation (and extrapolation) for meteorological parameters
- Coefficients of refractivity
- Standard atmosphere models for data above upper limit of NWMs
- Horizontal interpolation methods
- Numerical weather models (type and resolution)
- Radius of the Earth
- Gravity model for height conversion
- Time interpolation
- 2D vs 3D ray-tracing methods

3D minus 2D ray-traced delays, Station Tsukuba, 12.08.2008

different refractivity constants

(4)

Different upper limits of the troposphere (76km vs 100 km)

(5)

Horizontal interpolation (spline, bilinear, weighted mean)

(6)

(1)

Baseline length repeatabilities for CONT08 using ray-traced delays (red signs) and delays from the ECMWF/VMF1 (black signs) versus baseline lengths. Residual zenith delays and gradients are estimated.

Repeatability differences (ray-tracing minus ECMWF/VMF1). Residual zenith delays and gradients are estimated.

Baseline length repeatabilities for CONT08 using ray-traced delays (red signs) and delays from ECMWF/VMF1 (black signs) versus baseline lengths. Residual zenith delays were estimated, but no gradients.

(3)

Repeatability differences (ray-tracing minus ECMWF/VMF1). Residual zenith delays were estimated, but no gradients.

(4)

Baseline length repeatabilities for CONT08 using ray-traced delays (red signs) and delays from ECMWF/VMF1 (black signs). No gradients and no wet zenith delays were estimated in the analysis.

(5)

Repeatability differences (ray-tracing minus ECMWF/VMF1). No gradients and no wet zenith delays were estimated in the analysis.

(6)

- On average, ray-traced delays yield an accuracy similar to the standard approach. However, taking a closer look, at some stations ray-traced delays provide better tropospheric corrections
- In any case the additional estimation of gradients and residual zenith delays improves the results.
- Improvement with respect to the results from the classical approach with mapping functions if no additional gradients are estimated

• A ray-tracing package based on Eikonal equation has been developed at IGG/TU Wien

• Computational aspects must be considered

- (2)
- Focus on different Numerical Weather Models in future

 Validation of results obtained by VIE ray-tracing system, using VLBI intensive session observations (baseline Tsukuba-Wettzell)

- Ray-traced delays as a part of Vienna VLBI Software
- (VieVS) in future

- The Austrian Science Fund (FWF) for supporting this research under project P20902-N10 (GGOS Atmosphere).
- Iran Ministry of Science, Research and Technology (MSRT) and the University of Isfahan for funding part of this research in Vienna University of Technology.

Results of ray-tracing campaign – Tsukuba, 5 deg. Elevation angle

Results of ray-tracing campaign – Tsukuba, 5 deg. Elevation angle

Results of ray-tracing campaign – Wettzell, 5 deg. Elevation angle

Results of ray-tracing campaign – Wettzell, 5 deg. Elevation angle

