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1. Introduction

The recent tsunami event in Japan has underscored the importance of under-

standing free-surface flows and wetting and drying processes. In this work,

a wetting and drying algorithm for free-surface problems is proposed, which,

in contrast to most other methods, does not assume a hydrostatic pressure.

Non-hydrostatic flow features are apparent in coastal regions (thus also in

wetting and drying regions), but also play a significant role on a larger scale,

see Figure 1.

Non-hydrostatic Navier-Stokes Linear Shallow-Water

equations

Figure 1: Furumura and Saito (2007) showed

the importance of solving the Navier-Stokes

equations for tsunami prediction.

2. Underlying equations

• Incompressible Navier Stokes equations with Boussinesq approximation:

ρ0

(

∂~u

∂t
+ ~u · ∇~u

)

−∇ · µ∇~u +∇p̃ = −ρ′g~nz,

∇ · ~u = 0,

where ~u is the velocity, p̃ = p + ρ0gz the “piezometric” pressure, ρ0 and

ρ′ the background and perturbation density, µ the viscosity and g and ~nz

the gravity magnitude and direction, respectively.

•Boundary conditions in an ocean-like domain:

–Bottom/sides: No-normal flow boundary condition: 0 = ~n · ~u.

–Free-surface: For simplicity, the atmospheric pressure is assumed to be

zero. Then the relationship between pressure on the surface and free-

surface elevation η is given by:

η = max

(

p̃

ρ0g
, b + d0

)

. (1)

Here b is the bathymetry function and d0 enforces a positive water level

in the domain. From that, the combined kinematic free-surface boundary

condition with wetting and drying is derived (Funke et al. (2011)):

~n · ~nz

ρ0g

∂

∂t
max (p̃, ρ0g(b + d0)) = ~n · ~u. (2)

Figure 2: The free-surface boundary condi-

tion (2) reduces to the no-normal flow b.c.

in dry regions and to the kinematic free-

surface b.c. elsewhere.

3. Implementation

• Implemented in the finite-element code

Fluidity-ICOM, see Ford et al. (2004).

•The implicit θ-method is used for the time dis-

cretisation.

•The resulting non-linear system is solved us-

ing an extended pressure-correction scheme

(Kramer et al. (2010, in preparation)).

•At the end of each iteration the free-surface

elevation is obtained from equation (1) and the

mesh is deformed accordingly.

•The mesh deformation is performed only verti-

cally, hence no remeshing is necessary:

Figure 3: The extended

pressure-correction

scheme.

4. Conservation properties and validation

•Volume/mass conservation was proved (Funke et al. (2011)) for:

– the continuous equations from Section 2.

– the extended pressure-correction scheme from Section 3.

•Three-dimensional, non-viscous testcase in a closed basin, with analytical

solution by Thacker (1981).

–Highly accurate, see Figure 4. No visible numerical damping.

–Volume is conserved up to machine precision (< 10−14).

Figure 4: From left to right: Initial setup, solution at center of the domain

and after 24h.

5. Tsunami simulation

•Laboratory experiment of the

Hokkaido-Nansei-Oki tsunami

in 1993, Japan (Androsov et al.

(2008)).

•Dimensions: 5.4m× 3.4m.

•Wetting and drying occurs

both on the Okushiri island and

the mainland.

6. Summary

The proposed wetting and drying method

• is stable and accurate.

• conserves volume/mass.

•uses a computationally cheap mesh deformation instead of remeshing.

•does not introduce any restrictions to the discretisation, in particular un-

structured meshes and/or implicit timestepping methods can be used (and

therefore the timestep size is not restricted by the CFL condition).
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