

GCEP Global Climate & Energy Project

European Geosciences Union 2011 April 3-8, 2011 Section ERE 2.4

Error Analysis of Sub-Core Scale Permeability Distributions for Modeling Multi-Phase Flow Experiments

Michael Krause, Sam Krevor, Ronny Pinni and Sally Benson Energy Resources Engineering Department Stanford University

Science and technology for a low GHG emission world.

Motivation

- What are we doing?
 - Conduct CO₂-brine core flooding experiments at reservoir conditions
 - Conduct simulations of the CO₂-brine core flooding experiments
 - Match experimental results
 - Develop predictive capabilities
- Validation
 - Show that the simulations predict sub-core scale saturation
 - Show that it is accurate to an acceptable tolerance
 - Show that the permeability grid is unique

Experiments

3

Simulation Procedure

(cc

Permeability

5

Experiments

Simulation Input

Permeability

Simulation Results Cap. Pressure Method

Porosity

Saturation

Capillary Pressure

$$P_{c} = \sigma \cos(\theta) \sqrt{\frac{\phi}{k}} J(S_{w})$$

$$k_{i} = c_{o} \frac{1}{\overline{P}_{c}^{2}} \phi_{i} \left[J(S_{w,i})^{2} \right] (\sigma \cos \theta)$$

Krause, M., Perrin, J.-C. and Benson S.M. 2011. Modeling Permeability Distributions in a Sandstone Core for History Matching Coreflood Experiments. SPE Journal, Published Online 7 January 2011.

Simulation Comparison with Exp.

Simulation Comparison with Exp.

Conclusions:

- Very accurate replication of experimental measurement
- Excellent match in sub-core scale predication, as well as core average values

Error Comparison					
	CO_2 Sat R^2	S _{CO2} Error (%)	ΔP Error (%)		
Berea	0.909	0.5	3.1		
Waare C	0.727	7.9	7.8		

Saturation Comparison

Experiment CO₂ Saturation

EGU 2011 Section ERE 2.4

Error Analysis

- Want to use these cores for prediction
- Reduce error in CT measurement by merging multiple scans
- Optimal number of scans is 2-4 depending on scan times and cooling capability

4/5/2011

CC

(ŧ)

Error in 90% Fractional Flow Saturation

Accuracy of Permeability Grids

- Error propagation is a nonlinear function of saturation
- Error has a significant effect on permeability calculations at high CO₂ saturations
- Implies there is an optimal saturation for calculating permeability

Propagation of Brine Saturation Measurement Error into Perm Calculation

EGU 2011 Section ERE 2.4

Unique Permeability Grid

10

Comparison of Permeability Distributions for Two Fractional Flows

Grid	S _{CO2} Ave	Perm Error (md)	Perm Std. Dev. (md)
70	0.2063	1.4	254
90	0.2654	9.5	256

EGU 2011 Section ERE 2.4

4/5/2011

(CC

Ē

Conclusions

- The method works for predicting sub-core and corescale properties
 - Predict pressure drops
 - Predict saturation distribution
- Error can be minimized by selecting appropriate experimental conditions and output
- Difference in permeability grids
 - Experimental error attributed to some fraction of the difference
 - Capillary entry pressure not exceeded is limiting factor
- Permeability calculation still quite good

Supplemental Data

13

Property	Berea	Otway (Waare C Form.)
Pressure	12.41 MPa	12.41 MPa
Temperature	50C	63C
Salinity	0 ppm NaCl	6500 ppm NaCl
Injection Rate	3 ml/min	3 ml/min
Grid Element Size	1.5mm x 1.5mm x 2mm	2mm x 2mm x 3mm
$\phi_{\rm core}$	24.09%	18.11%
Core Permeability	941 md	62.3 md
Length	10.2 cm	7.5 cm
Core Diameter	5.08 cm	5.08 cm

4/5/2011

CC

 (\mathbf{i})

BY