Modular Harth Submodel

The Asian UTLS

observations and modelling of chemistry, transport, and mixing

Hella Riede (1) Patrick Jöckel (2) Rolf Sander (1) Ralph Lehmann (3) Heini Wernli (4) Carl A. M. Brenninkmeijer (1) the CARIBIC team (5)

(1) Max Planck Institute for Chemistry, Germany

- (2) Deutsches Zentrum für Luft- und Raumfahrt, Germany
- (3) Alfred Wegener Institute for Polar and Marine Research, Germany
- (4) ETH, Institute for Atmospheric and Climate Science, Switzerland
- (5) CARIBIC project team

CARIBIC flights 2005 - 2010

BY

CARIBIC flights to China

CC

- → 81 flights Frankfurt ↔ Guangzhou ↔ Manila between 05/2005 and 03/2008
- ✤ typical cruising altitude ~200 hPa
- → continuous measurements of about 15 compounds and flask samples of about 50 compounds, including SF₆, CO, O₃, NO_y to NMHCs
- ✤ here: focus on CO

Data and models

- observations and models in different "dimensions"
- → CARIBIC (observations)
 → 1-D "truth"
- → EMAC (global, nudged AC GCM)
 → modelled 3-D environment
- → CAABA (trajectory-box model)
 → off-line analysis of EMAC

CARIBIC

Quantifying

- high consistency between trajectory-box model and 3-D model (Modular Earth Submodel System) in transport and chemistry
- individual for each species
- dependent on trajectory travel time

Transport patterns

BY

Transport patterns

BY

✤ horizontal catchment area size

Transport patterns

CC

BY

CO transport, chemistry, mixing

CARIBIC

- all values in nmol/mol (ppbV)
- ✤ transport and mixing

CO transport & mixing

CC

Hella Riede (hella.riede@mpic.de) | Asian UTLS | EGU 2011, Vienna Î BY

CC

Contributions mixing & chemistry

CO

СС

BY

Hella Riede (hella.riede@mpic.de) | Asian UTLS | EGU 2011, Vienna

CARIBIC

China - chemistry hotspot

- only 0.2 0.4 % positive CO chemistry contribution
- in clusters as well as single trajectories, no special cluster bundles
 - \rightarrow are those few interesting?

CARIBIC

Δchemistry (nmol/mol)

СС

China - chemistry hotspot

CC

CC

BΥ

CARIBIC

Single flight

China - catchment area

CC

BY

Hella Riede (hella.riede@mpic.de) | Asian UTLS | EGU 2011, Vienna

CARIBIC

China - catchment area

ARIBI

Chemical lifetimes

	chemically ac	tive average	•	reduction	on	min	max	
	< 600 hPa	(me	dian)	by %				
NO	56 sec	30 ((4) min	97		20 sec	3 days	
НСНО	4 h	9 ((6) h	55		3 h	6 days	
NO2	4 h	18 (1	4) h	80		3 min	4 days	
$CH_{3}COCH_{3}$	12 days	40 (2	20) days	70		8 days	3 years	
CO	25 days	5 ((3) months	80		12 days	20 years	
O ₃	15 days	450 (30	00) days	97		6 days	20 years	
	Γ	HCHO + hv \rightarrow CO + H ₂			C	$CO + O_3 \rightarrow O_2 + CO_2$		
		$HCHO \rightarrow CO + H_2O_2^{-1}$			C	$CO + 2O_2 \rightarrow O_3 + CO_2$		
		$HCHO + O_{3} \rightarrow CO + H_{2}O + 2O_{2}$			L	L	~ L	

photolysis, HO_x

and NOx chemistry

- identifying catalytic cycles
- identifying important pathways

R. Lehmann, J. Atmos. Chem., 2004

Summary

- CAABA in trajectory mode is an analytical tool to interpret 3-D model data from EMAC off-line
- observation-model comparisons → helps to understand why differences occur between model and observations
- it supplies additional information about the history of observed air masses
- EMAC (nudged) and ECMWF show similar transport patterns, EMAC is less variable
- relatively coarse model resolution → overestimated mixing in EMAC
- typical transport pattern and seasonal outflow (monsoon) of species lead to exceptional chemical activity
- hot spots of chemistry cause exceptional variations in chemical lifetimes

Thank you for your attention!

Atmospheric Chemistry Department

ETH

Chemistry due to mixing

