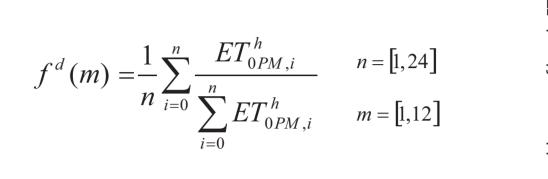
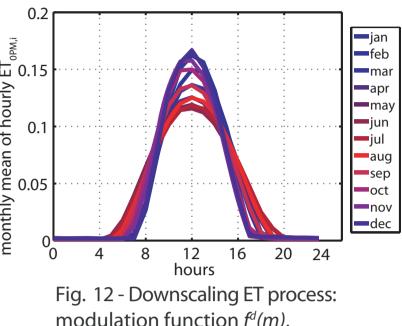


Sensitivity of the hydrological response in a Mediterranean catchment to different climate model forcing

Monica Piras⁽¹⁾, Giuseppe Mascaro⁽¹⁾, Roberto Deidda⁽¹⁾ & Enrique Vivoni⁽²⁾ (1) Dipartimento di Ingegneria del Territorio, University of Cagliari, Italy, *monicapiras@unica.it* (2) School of Earth and Space Exploration & School of Sustainable Engineering and the Built Environment, Arizona State University, vivoni@asu.edu

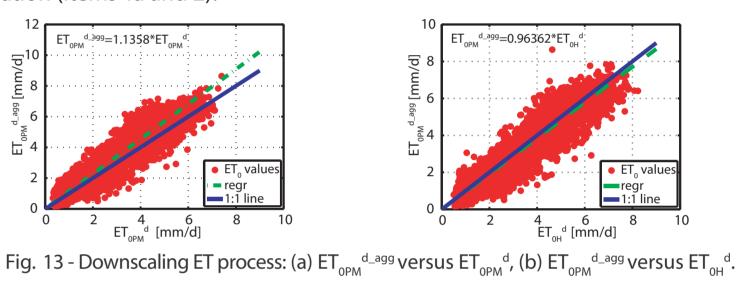
School of Earth & Space Exploration ARIZONA STATE UNIVERSITY


Dipartimento di Ingegneria del Territorio Università di Cagliari


http://vivoni.asu.edu/shrg/pages/index.htm Surface Hydrology Research Group

Downscaling strategy for ET₀.

1) We computed hourly ET_a with the FAO Penman-Monteith (PM) equation, ET_{app}^h from meteorological data (global solar radiation, temperature, relative humidity, wind speed) provided by ARPAS (Sardinian Regional Agency for Environmental Protection).


1a) We calibrated for each month a dimensionless function $f^{d}(m)$ (Fig. 12) simulating the diurnal cycle of ET_{o} , defined as:

1b) We computed daily aggregated ET_{0} from hourly estimates, $ET_{0PM}^{d_{agg}}$ and compared them with daily estimates, ET_{OPM}^{d} (Fig. 13a).

2) We computed daily ET_o based on daily T_{max} and T_{min} with the 1985 Hargreaves equation, ET_{OH}^{d} . 3) We fitted a line to represent the relation between ET_{OH}^{d} and ET_{OPM}^{d-agg} (Fig. 13b). It can be inferred from this figure that $ET_{\alpha\mu}^{d}$ estimations are as good as daily aggregated $ET_{\alpha\rho\mu}^{d}$. 4) Thus, we can downscale starting from the Hargreaves daily estimates, $ET_{\alpha\mu}^{d}$, in the period of model calibration (items 1a and 2).

Future work

• Apply an algorithm to downscale daily rainfall using a multifractal model (Deidda et al., 1999), calibrated with high-resolution (5-min) data collected by automatic rain gages in the period (1988-1996).

• Install two new streamflow gage stations in the Rio Costara watershed (Fig. 3) to investigate, in controlled conditions, the hydrological response of a basin containing the Azienda San Michele (Fig. 14).

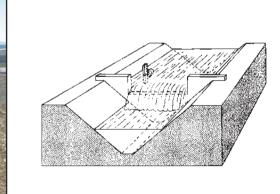


Fig. 14 - Sections where streamflow gages will be installed: (a) Rio Costara, (b) Azienda S. Michele channel, (c) type of weir (V-notch) that will be installed.

• Use historical and downscaled data to calibrate the hydrological model.

• Select future climate scenarios, extract outputs of hydrometeorological variables from GCM and RCM, and eventually apply statistical downscaling techniques.

• Run the hydrological model with inputs derived from climate models to evaluate impacts of climate change on the water budget in the Rio Mannu basin.

References

Allen, R.G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., et al. (2007). A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricultural Water Management, 1--300.

Deidda, R., Benzi R., & Siccardi F. (1999), Multifractal modeling of anomalous scaling laws in rainfall, Water Resources Research, 35(6), 1853--1867, doi:10.1029/1999WR900036.

Ivanov, V. Y., Vivoni, E. R., Bras, R. L. & Entekhabi. D. (2004), Chatchment hydrologic response with a fully distributed triangulated irregular network model, Water Resources Research, 40, 1--23.

Ivanov, V. Y., Vivoni, E. R., Bras, R. L. & Entekhabi. D. (2004), Preserving high-resolution surface and rainfall data in operational-scale basin hydrology: a fully distributed physically-based approach Journal of Hydrology, 80--111.

Vivoni, E. R., Ivanov, V. Y., Bras, R. L. & Entekhabi. D. (2004), Generation of Triangulated Irregular Networks based on Hydrological Similarity, Journal of Hydrologic Engineering ASCE/ July/August2004, 288--302.

Vivoni, E. R., Ivanov, V. Y., Bras, R. L. & Entekhabi. D. (2005), On the effects of triangulated terrain resolution on distributed hydrologic model response, Hydrological Processes, 19, 2101--2122.