“Estimating the spatial distribution of daily air temperature by Time Series Analysis of MODIS Land Surface Temperature”

S. M. Alfieri1, F. De Lorenzi1, A. Bonfante1, A. Basile1, M. Menenti2

1. Institute for Agricultural and Forest Systems in the Mediterranean, Ercolano, Italy.
 Silvia.alfieri@isafom-cnr.it
2. University of Technology, Department of Geoscience and Remote Sensing, Delft, The Netherlands
OBJECTIVES

Increase spatial resolution of available air temperature (Ta) data using Land Surface Temperature (LST) time series observed by satellite.

Research questions:

- Are spatial and temporal patterns in LST stable?
- Can we use time series of LST spatial data to capture and characterize such patterns?
- Can we characterize the coupling of Ta with LST using a limited areal density of meteorological stations?

Case study: Telesina Valley, Italy (200 km²)

* Method applied to downscale climate scenario on maximum air temperature at 35 x35 Km
THE APPROACH

Phase 1a: Cloud removal and gap-filling of LST time series

Phase 1b: Characterization of LST spatio-temporal patterns

Phase 1:
- HANTS algorithm
- Gap-filled
- LST/LST_0
- Pixel-wise ratio

Phase 2:
- FFT analysis
- Amplitudes and phases

Phase 3:
- Correlation Analysis
- a1;b1 a0;b0

Phase 4:
- Air temperature calculation

Phase 3.
- Evaluate relationship LST/Ta

Phase 2.
- Evaluate temporal stability of LST ratio
Cloud removal and gap-filling of LST time series

The algorithm handles the Fourier analysis as a curve fitting problem. It works using an iterative procedure, where invalid observations are removed from curve fitting process assigning a weight of zero to them.

Parameter Setting

- **N° of images**: 365
- **Valid range**: 250 - 350 K
- **Outlier direction**: low
- **Fit Error Tolerance (FET)**: 8
- **Degree of Overdeterminendness (DOD)**: 50
- **N° of Frequency**: 3
- **Harmonic Periods**: 365, 180, 120

Surface Temperature - MODIS, WA

Original Data Set

Smoothed Data Set using HANTS

RECONSTRUCTED LST TIME SERIES

Temperature in K
THE APPROACH

Phase 1a. Cloud removal and gap-filling of LST time serie

Phase 1b. Characterization of LST spatio-temporal patterns

Phase 1. Daily LST MODIS TERRA DAY (2000-2006). LST (x,y)

Phase 2. Evaluate temporal stability of LST ratio

Phase 3. Evaluate relationship LST/Ta

Phase 4. Air temperature calculation

Input

Output

Operation

Final output

HANTS algorithm

Correlation Analysis

FFT analysis

Amplitudes and phases

Gap-filled

LST/LST_o

Pixel-wise ratio

Synthesis

a1:b1

a0:b0

T_{max, station}

T_{max_0}

Air temperature (x,y)
Temporal series of pixel-wise ratio r of LST(x,y) to LST at the reference point show a periodical trend due to seasonality of the allocation of net radiation to sensible and latent heat flux.
THE APPROACH

Phase 1a. Cloud removal and gap-filling of LST time series

Phase 1b. Characterization of LST spatio-temporal patterns

Phase 1
- HANTS algorithm
- Gap-filled
- LST/LST₀
- Pixel-wise ratio

Phase 2
- FFT analysis
- Amplitudes and phases

Phase 3
- Correlation Analysis
- a1;b1
- a0;b0

Phase 3 (1)
- Daily LST MODIS TERRA DAY (2000-2006), LST (x,y)

Phase 3 (2)
- T_max_station
- T_max₀

Phase 4
- Air temperature calculation

Phase 4
- Air temperature (x,y)

Phase 2
- Evaluate temporal stability of LST ratio

Phase 3
- Evaluate relationship LST/Ta
Evaluate temporal stability of LST ratios

Harmonic analysis of pixel wise ratio yearly time series has been performed considering three harmonic components (365, 180, 120 days).

<table>
<thead>
<tr>
<th>Period in days</th>
<th>Area average</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean r</td>
<td>0.991</td>
<td>0.01</td>
</tr>
<tr>
<td>365 (A_1)</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>180 (A_2)</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>120 (A_3)</td>
<td>0.003</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Spatial variability negligible

Spatial variability not negligible

$r \approx 1$

$A_1, A_2, A_3 \ll r$
Evaluate temporal stability of LST ratios

The interannual variability of pixel-wise ratio has been evaluated by the calculation of coefficient of variation (cv) of the amplitudes.

Interannual variability of amplitude is not negligible but much smaller than mean r

We reconstruct $r(x,y,t)$ taking into account the periodic components but we neglect the interannual variability of the amplitude
THE APPROACH

Phase 1a. Cloud removal and gap-filling of LST time series

Phase 1b. Characterization of LST spatio-temporal patterns

Phase 2. Evaluate temporal stability of LST ratio

Phase 3. Evaluate relationship LST/Ta

Phase 4. Air temperature calculation
Air Temperature calculation

\[T_{\text{air}}(x,y) = T_{\text{surf}}(x,y) \times a_1 + b_1 \]

\[T_{\text{surf}}(x,y) = T_{\text{surf}}_{\text{rf}} \times \text{ratio}(x,y) \]

\[T_{\text{surf}}_{\text{rf}} = T_{\text{air}}_{\text{rf}} \times a_0 + b_0 \]

Ratio\((x,y)\)

Fourier synthesis using mean amplitudes and phases

a0 b0 estimation

LST vs Ta
RELATIONSHIP AT REFERENCE LOCATION

a1 b1 estimation

Ta vs LST
RELATIONSHIP AT STATIONS

Tair\(_{\text{rf}}\)=Air temperature at reference location.

Tsurf\(_{\text{rf}}\)=Surface temperature at reference location.

Ts=Surface temperature at pixel location.
THE APPROACH

Phase 1a. Cloud removal and gap-filling of LST time serie

Phase 1b. Characterization of LST spatio-temporal patterns

Phase 1
- HANTS algorithm
 - Gap-filled
 - LST/LST₀
 - Pixel-wise ratio

Phase 2
- FFT analysis
- Amplitudes and phases

Phase 3
- Correlation Analysis
 - $a₁;b₁$ $a₀;b₀$
- Synthesis
 - $T_{max_station}$ $T_{max₀}$

Phase 3. Evaluate relationship LST/Ta

Phase 4
- Air temperature calculation
- Phase 4. Air temperature calculation

Phase 2. Evaluate temporal stability of LST ratio
Ta vs Tsurf RELATIONSHIP AT STATIONS

Tsurf vs Ta RELATIONSHIP AT REFERENCE LOCATION

\[a_1 = 0.8100 \quad b_1 = 58.7637 \quad R^2 = 0.87 \]

\[a_0 = 1.18 \quad b_0 = -52.11 \quad R^2 = 0.86 \]
Validation

SAME PERIOD OF LST OBSERVATIONS

PRE – MODIS

Stazione	anno	RMSE daily
Benevento | 1984-1988 | 2.8 K |
Bucciano | 1984 | 2.5 K |
Montesarchio| 1984 | 2.9 K |
Conclusions

• A procedure to downscale maximum air temperature using satellite land surface temperature has been developed.

• The spatial pattern of LST has a periodic component with limited interannual variability.

• The procedure has been evaluated against observations of air temperature data for the same period as the MODIS LST observations and for few stations in earlier years.

• The RMSE on estimated daily air temperatures was about 3 K and about 2 K for five days moving averages.

• The procedure should be extended to a longer record of LST observations.